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Abstract
We propose a framework for descriptively analyzing
sets of partial orders based on the concept of depth
functions. Despite intensive studies of depth func-
tions in linear and metric spaces, there is very little
discussion on depth functions for non-standard data
types such as partial orders. We introduce an adapta-
tion of the well-known simplicial depth to the set of
all partial orders, the union-free generic (ufg) depth.
Moreover, we utilize our ufg depth for a comparison
of machine learning algorithms based on multidimen-
sional performance measures. Concretely, we analyze
the distribution of different classifier performances
over a sample of standard benchmark data sets. Our re-
sults promisingly demonstrate that our approach differs
substantially from existing benchmarking approaches
and, therefore, adds a new perspective to the vivid
debate on the comparison of classifiers.
Keywords: partial orders, data depth, benchmarking,
algorithm comparison, outlier detection, non-standard
data

1. Introduction
Partial orders – and the systematic incomparabilities of
objects encoded in them – occur naturally in a variety of
problems in a wide range of scientific disciplines. Exam-
ples range from decision theory, where the agents under
consideration might be unable to arrange the consequences
of their actions into total orders (see, e.g., [38, 22]) or have
partial cardinal preferences (see, e.g., [18, 20]), over social
choice theory, where a fair aggregate order might only be
possible by incorporating systematic incomparabilities (see,
e.g., [31, 19]), to finance, where risky assets do not always
have to be comparable (see, e.g., [24, 7]). Of course, many
other relevant examples exist.
In the specific context of statistics and machine learning,

the incompleteness of the considered orders often origi-
nates from the fact that the objects to be ordered are to be
compared with respect to several criteria and/or on several
instances simultaneously: only if there is unanimous dom-

inance of one object over another, this order is included
in the corresponding relation. Quite a number of research
papers recently have been devoted to such comparison in
the specific context of classification algorithms, either with
respect to multiple quality metrics (e.g., [12, 21]) or across
multiple data sets (e.g., [10, 3]) or with respect to gen-
uinely multidimensional performance criteria like receiver
operating characteristic (ROC) curves (e.g., [8]). Another
source of partial incomparability of classifiers is the case
of classifiers that make only imprecise predictions, like for
example the naive credal classifier (cf., [46]) or credal sum-
product networks (cf., [27]). In this case the imprecision in
the predictions may take over to incomparabilities of the
then possibly interval-valued performance measures1
Within the application field of machine learning and

statistics, one further aspect is of special importance: Since
the instances generally depend on chance, the same is true
for the partial orders considered. Consequently, instead
of a single partial order, random variables must then be
analyzed that map into the set of all possible partial orders
on the set of objects under consideration. For example, in the
aforementioned comparison of classification algorithms, the
concrete order obtained depends on the random instantiation
of the data set on which they are applied. In this paper, we
are interested in exactly this situation: we discuss ways to
descriptively analyze samples of such partial order-valued
(or short: poset-valued2) random variables.
Before starting, it is worth taking the time to distinguish,

right at the beginning, those works that we believe are
closest to ours. The main difference from the analysis
in [21], which addresses a similar setting, is that in our case,
in addition to the emphasis on the descriptive rather than the
inferential aspects, the random orders do not (necessarily)
arise retrospectively from the pairwise comparisons of the

1For example one could think of comparing classifiers with utility-
discounted predictive accuracy, cf., [47, p. 1292 ] under the usage of a
whole range [𝑎, 𝑎] for the coefficient of risk aversion.

2Note that in fact we speak here about random variables which have
posets (on a common underlying ground space) as outcomes. This should
not be confused with random variables which have values in a partially
ordered set.
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individual algorithms. Rather, they are conceived as abstract
random objects. Further, the goal of our paper is also very
different: while [21] is interested in exploiting the available
information in the best possible way to give one global
partial order over the classifiers under consideration, the
present paper aims to analyze the distribution of the partial
classifier orders over a given set of data sets. The two
methods are therefore – despite similarity of the formal
setting – very different and thus not directly comparable.
Additionally, we do not hold the view that there is an un-

derlying true (random) total order together with a coarsening
mechanism that generates the (random) partial order. Such
views are termed epistemic view within the IP-community,
cf., [9]. Applications of this view in the context of partial
order data can be found for example in [23, 30]. Opposed
to this view, within the nomenclature of [9], we see our
approach more in the spirit of the ontic view that is usually
applied to set-valued data and that states that such data
are set-valued by nature and that there is no true but un-
observed data point within the observed sets. Generally,
this distinction between the ontic and the epistemic view
is much discussed in the IP comunity and especially at
the ISIPTA conferences.3 However, since in our case the
random objects are partial orders, the term ontic as used
in [9] seems to fit not perfectly. Instead we understand
poset-valued data as a special type of non-standard data.4
While the same view is taken in [5], the differences here

are found more in the objective: while that paper focuses
on theory for stochastic modeling of poset-valued random
variables, the present paper can be viewed as a framework
for analyzing data, e.g., sampled from one of these models.
Of course, a descriptive analysis of samples of partial

orders which explicitly addresses the above interpretation
requires a completely different – and so far to the best
of our knowledge not existing – mathematical apparatus
compared to an analysis of standard data. A suitable formal
framework is by no means obvious here. Fortunately, it
turns out that the concept of a depth function, which has so
far mainly been applied to ℝ𝑑-valued random variables5
(see, e.g., [39, 28]), can be promisingly adapted to poset-
valued random variables. Generally speaking, (data) depth

3Concrete applications can be found e.g. in [33] for the ontic, and in
[32] for the epistemic view. A case where the ontic and the epistemic view
coincide is discussed in [34]. Beyond this, in the field of partial identifi-
cation in the context of generalizing confidence intervals to confidence
regions for the so-called identified set, the question about an ontic vs. an
epistemic view is also implicitly asked (without reference to these terms)
by asking if such a confidence set should cover the true parameter or the
whole identified set with prespecified probability, cf., [40].

4Note that we do not want to generally rule out epistemic treatment,
but this is not the focus of this paper. Such a treatment could use that every
partial order can be described by the set of all its linear extensions. For
further discussions, c.f., [5].

5Exceptions are, e.g., the definition of depth functions for functional
data in [26] and on lattices in [34, 35].

functions define a notion of centrality and outlyingness of
observations with respect to the entire data cloud. Equipped
with this adapted depth concept, some classical descriptive
statistics can then be naturally adapted to this particular
non-standard data type as well.
Our paper is organized as follows: In Section 2, we briefly

discuss the required mathematical definitions and concepts.
We give a formal definition of our depth function, the ufg
depth, in Section 3 and discuss some of its properties in
Section 4. The concrete theorems and proofs can be found
in the appendix. While Section 5 prepares our application
by providing the required background, Section 6 is devoted
to applying our framework to a specific example, namely
the analysis of the goodness of classification algorithms on
different data sets. Section 7 concludes by elaborating on
some promising perspectives for future research.

2. Preliminaries
Partial orders (posets) sort the elements of a set 𝑀 , where
we allow that two elements 𝑦1, 𝑦2 ∈ 𝑀 are incomparable.
Formally stated: Let 𝑀 be a fixed set. Then 𝑝 ⊆ 𝑀 × 𝑀

defines a partial order (poset) on 𝑀 if and only if 𝑝 is
reflexive (for each 𝑦 ∈ 𝑀 holds (𝑦, 𝑦) ∈ 𝑝), antisymmetric
(if (𝑦1, 𝑦2), (𝑦2, 𝑦1) ∈ 𝑃 then 𝑦1 = 𝑦2 is true) and transitive
(if (𝑦1, 𝑦2), (𝑦2, 𝑦3) ∈ 𝑝 then also (𝑦1, 𝑦3) ∈ 𝑝). If 𝑝 is also
strongly connected (for all 𝑦1, 𝑦2 ∈ 𝑀 either (𝑦1, 𝑦2) ∈ 𝑝

or (𝑦2, 𝑦1) ∈ 𝑝), then 𝑝 defines a total/linear order. For a
fixed set 𝑀 , various posets sort the set 𝑀 . We are interested
in all posets that can be obtained for the set 𝑀, where the
cardinality #𝑀 is finite. We denote the set of all posets on
𝑀 by P𝑀 (or P for short). Sometimes it can be useful to
consider only the transitive reduction, this means that for a
poset 𝑝 we delete all pairs (𝑦1, 𝑦2) which can be obtained
by a transitive composition of two other elements in 𝑝.
Note that there exists a one-to-one correspondence between
the transitive reduction of posets and the posets itself. We
denote the transitive reduction of a poset 𝑝 by 𝑡𝑟 (𝑝). This
transitive reduction is often used to simplify the diagram
used to represent the partial order. These diagrams are called
Hasse diagram. They consist of edges and knots where the
knots are the elements of 𝑀 and the edges state which
element lies below the other, e.g., see Figure 2. The reverse,
where we add all pairs which follow from transitivity, is
called transitive hull. We call 𝑡ℎ(𝑝) the transitive hull of a
relation 𝑝. We refer to [15] for further readings on partial
orders. From now on, let P be all posets for a fixed set 𝑀 .
We denote the elements of 𝑀 by 𝑦.
The analysis concept for poset-valued observations pre-

sented here is based on a closure operator on P, see Sec-
tion 3. In general, a closure operator 𝛾𝛺 : 2𝛺 → 2𝛺
on set 𝛺 is an operator which is extensive (for 𝐴 ⊆
𝛺, 𝐴 ⊆ 𝛾𝛺 (𝐴) holds), increasing, (for 𝐴, 𝐵 ⊆ 𝛺 with
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𝐴 ⊆ 𝐵, 𝛾𝛺 (𝐴) ⊆ 𝛾𝛺 (𝐵) is true) and idempotent (for
𝐴 ⊆ 𝛺, 𝛾𝛺 (𝐴) = 𝛾𝛺 (𝛾𝛺 (𝐴)) holds). The set 𝛾𝛺 (2𝛺 )
is called the closure system. Note that every closure op-
erator (and therefore the closure system) can be uniquely
described by an implicational system. An implicational
system I on 𝛺 is a subset of 2𝛺 × 2𝛺 . The implicational
system corresponding to the closure operator 𝛾𝛺 is defined
by all pairs (𝐴, 𝐵) ∈ 2𝛺 × 2𝛺 satisfying 𝛾𝛺 (𝐴) ⊇ 𝛾𝛺 (𝐵).
For short, we denote this by 𝐴 → 𝐵. For more details on
closure operators and implicational systems, see [4].
We aim to define a centrality and outlyingness measure

on the set of all posets P based on a fixed and finite set 𝑀 .
In general, functions that measure centrality of a point with
respect to an entire data cloud or an underlying distribution
are called (data) depth functions. Depth functions on ℝ𝑑

have been studied intensively by [39] and [29], and various
notions of depth have been defined, such as Tukeys’ depth,
see [42], and simplicial depth, see [25]. The idea behind the
ufg depth introduced here is an adaptation of the simplicial
depth on ℝ𝑑 to posets, which uses the concept of a closure
operator. The simplicial depth onℝ𝑑 is based on the convex
closure operator which is defined as follows:

𝛾ℝ𝑑 :
2ℝ𝑑 → 2ℝ𝑑

𝐴 ↦→
{
𝑥 ∈ ℝ𝑑

���� 𝑥 =
∑𝑘

𝑖=1 _𝑖𝑎𝑖 with 𝑎𝑖 ∈ 𝐴,

_𝑖 ∈ [0, 1],∑𝑘
𝑖=1 _𝑖 = 1, 𝑘 ∈ ℕ

}
.

For the simplicial depth, we consider only input sets 𝐴 with
cardinality 𝑑 + 1 which form a (𝑑 + 1)-simplex (when no
duplicates occur). Then, the simplicial depth of a point
𝑥 ∈ ℝ𝑑 is the probability that 𝑥 lies in the codomain of the
convex closure operator of 𝑑 + 1 points randomly drawn
from the underlying (empirical) distribution. The set of all
sets 𝐴 with cardinality 𝑑 + 1-simplices is a proper subset of
2ℝ𝑑 . By using Carathéodorys’ Theorem, see [11], we obtain
that any set 𝐵 of 𝑑 + 1 unique points is the smallest set, for
which there exists no family of proper subsets (𝐴𝑖)𝑖∈{1,...,ℓ }
with 𝐴𝑖 ( 𝐵 such that

⋃
𝑖∈{1,...,ℓ } 𝛾ℝ𝑑 (𝐴𝑖) = 𝛾ℝ𝑑 (𝐵). Thus,

these simplices still characterizes the corresponding closure
system. ForM being the set of all probability measures on
ℝ𝑑 the simplicial depth is then given by

𝐷 : ℝ𝑑 ×M → [0, 1],
(𝑥, a) ↦→ a(𝑥 ∈ 𝛾ℝ𝑑 {𝑋1, . . . , 𝑋𝑑+1}),

where 𝑋1, . . . , 𝑋𝑑+1
𝑖𝑖𝑑∼ a. When we consider a sample

𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑑; 𝑛 ∈ ℕ, we use the empirical probability
measure instead of a probability measure a. Thus, for a
sample 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑑 with empirical measure a𝑛 we
obtain as empirical simplicial depth

𝐷𝑛 :
ℝ𝑑 → [0, 1],
𝑥 ↦→

( 𝑛
𝑑+1

) ∑
1≤𝑖1<...<𝑖𝑑+1≤𝑛 1𝛾ℝ𝑑 {𝑥𝑖1 ,...,𝑥𝑖𝑑+1 } (𝑥).

Hence, if 𝑥1, . . . , 𝑥𝑛 are affine independent, then the depth
of a point 𝑥 is the proportion of (𝑑 + 1)-simplices given by
𝑥1, . . . , 𝑥𝑛 that contain 𝑥.

3. Union-Free Generic Depth on Posets
Now, we introduce the union-free generic (ufg) depth func-
tion for posets which is in the spirit of the simplicial depth
function, see Section 2. To define the depth function, we
start, similar to the simplicial depth, with defining a closure
operator on P. The definition of the closure operator uses
formal concept analysis, see [15], and the formal context
introduced in [5]. This gives us

𝛾 :
2P → 2P

𝑃 ↦→
{
𝑝 ∈ P | ⋂

�̃�∈𝑃
𝑝 ⊆ 𝑝 ⊆ ⋃

�̃�∈𝑃
𝑝

}
.

This closure operator maps a set of posets 𝑃 onto the sets of
posets where each poset is a superset of the intersection of 𝑃
and a subset of the union. In other words, any 𝑝 lying in the
closure of 𝑃 satisfies the following condition: First, every
pair (𝑦1, 𝑦2) ∈ 𝑀 × 𝑀 that lies in every poset in 𝑃 is also
contained in 𝑝, and second, for every pair (𝑦1, 𝑦2) that lies
in 𝑝, there exists at least one 𝑝 ∈ 𝑃 such that (𝑦1, 𝑦2) ∈ 𝑝.
Note that while the intersection of posets defines a poset
again, this does not hold for the union. Analogously to the
definition of the simplicial depth, we now only consider a
subset of 2P and define

𝒮 = {𝑃 ⊆ P | Condition (𝐶1) and (𝐶2) hold }

with Conditions (C1) and (C2) given by:

(C1) 𝑃 ( 𝛾(𝑃),

(C2) There does not exist a family (𝐴𝑖)𝑖∈{1,...,ℓ } such that
for all 𝑖 ∈ {1, . . . , ℓ}, 𝐴𝑖 ( 𝑃 and

⋃
𝑖∈{1,...,ℓ } 𝛾(𝐴𝑖) =

𝛾(𝑃).6

𝒮 is a proper subset of 2P , see Theorem 2 for details, which
reduces 2P by redundant elements in the following sense:
First, all subsets 𝑃 ⊆ P with 𝛾(𝑃) = 𝑃 are trivial and there-
fore not included. Second, if there exists a proper subset
�̃� ( 𝑃 with 𝛾(�̃�) = 𝛾(𝑃), then 𝑃 is also not in 𝒮. This
follows by setting ℓ = 1 and 𝐴1 = �̃�, which defines a family
contradicting Condition (C2). These two properties can be
generalized to arbitrary closure systems, and referring to
[2], we call a set fulfilling these properties generic. The
final reduction is to delete also all sets 𝑃 where 𝑃 can be
decomposed by a family of proper subsets (𝐴𝑖)𝑖∈{1,...,ℓ }
of 𝑃. Further, in this case, the union of (𝛾(𝐴𝑖))𝑖∈{1,...,ℓ }
equals 𝛾(𝑃). Note that due to extensitivity, the assump-
tion ∪𝑖∈{1,...,ℓ }𝛾(𝐴𝑖) ⊆ 𝛾(𝑃) is always true. We call sets

6In formal concept analysis this is sometimes called proper.
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respecting this third part union-free. Thus 𝒮 consists of
elements which are union-free and generic.

Example 1 As a concrete example, consider the set
𝒮 based on all posets on {𝑦1, 𝑦2, 𝑦3}. Let 𝑝1, 𝑝2 and
𝑝3 be posets given by the transitive hull of {(𝑦1, 𝑦2)},
{(𝑦1, 𝑦2), (𝑦1, 𝑦3)} and {(𝑦1, 𝑦3), (𝑦2, 𝑦3)}. One can show
that the closure of the family {𝑝1, 𝑝3} gives the same closure
as {𝑝1, 𝑝2, 𝑝3}. Thus, {𝑝1, 𝑝2, 𝑝3} contradicts Condition
(C2). For a single poset 𝑝 we can immediately prove that the
closure contains only itself. Therefore, any set consisting of
only one poset does not satisfy Condition (C1). In contrast,
{𝑝2, 𝑝3} satisfies both Condition (C1) and Condition (C2),
since it implies the trivial poset 𝑝𝛥 := {(𝑦, 𝑦) | 𝑦 ∈ 𝑀},
consisting only of the reflexive part. Thus, {𝑝1, 𝑝2} is an
element of 𝒮.

Now, we define the union-free generic (ufg) depth of
a poset 𝑝 to be the weighted probability that 𝑝 lies in
a randomly drawn element of 𝒮. Let M be the set of
probabilities on P. The union-free generic (ufg for short)
depth on posets is given by

𝐷 :
P ×M → [0, 1]

(𝑝, a) ↦→
{
0, if for all 𝑆 ∈ 𝒮 :

∏
�̃�∈𝑆 a(𝑝) = 0

𝑐
∑

𝑆∈𝒮 : 𝑝∈𝛾 (𝑆)
∏

�̃�∈𝑆 a (𝑝) , otherwise,

with 𝑐 =

(∑
𝑆∈𝒮

∏
�̃�∈𝑆 a𝑛 (𝑝)

)−1
7. These two cases are

needed because 𝑐 is not defined in the first case. Note that
if there exists an 𝑆 ∈ 𝒮 with

∏
�̃�∈𝒮 a(𝑝) ≠ 0, then 𝐷 . 0.

The case that 𝐷 ≡ 0 only occurs in two specific situations
which result from the structure of the probability mass, see
Property (P2) and Corollary 3 for details. In contrast to
the simplicial depth where only sets of cardinality 𝑑 + 1
are considered, the elements of 𝒮 differ in their cardinality.
Thus, different approaches on how to include the different
cardinalities are possible, i.e., by weighting. Here, we used
weights equal to one.
The empirical version of the ufg depth uses the empirical

probability measure a𝑛 given by an iid sample of posets
𝑝 = (𝑝1, . . . , 𝑝𝑛), 𝑛 ∈ ℕ instead. We obtain as empirical
union-free generic (ufg) depth

𝐷𝑛 :
P → [0, 1]

𝑝 ↦→
{
0, if for all 𝑆 ∈ 𝒮 :

∏
�̃�∈𝑆 a𝑛 (𝑝) = 0

𝑐𝑛
∑

𝑆∈𝒮, 𝑝∈𝛾 (𝑆)
∏

�̃�∈𝑆 a𝑛 (𝑝) , else,

with 𝑐𝑛 =

(∑
𝑆∈𝒮

∏
�̃�∈𝑆 a𝑛 (𝑝)

)−1
. The empirical ufg depth

of a poset 𝑝 is therefore the normalized weighted sum of

7Note that Condition (C1) and (C2) can be applied to the convex
closure operator onℝ𝑑 , see Section 2, and we obtain an adapted𝒮𝑐𝑜𝑛𝑣𝑒𝑥 .
Then, 𝒮𝑐𝑜𝑛𝑣𝑒𝑥 together withM𝑐𝑜𝑛𝑣𝑒𝑥 the set of measures which are
absolute continuous to the Lebesgue measure, leads to the simplicial depth.

drawn sets 𝑆 ∈ 𝒮 which imply 𝑝. Note that when restricting
𝒮 to the set {𝑆 ∩ {𝑝1, . . . , 𝑝𝑛} | 𝑆 ∈ 𝒮}, this does not
change the depth value. This holds since for other elements
𝑆 ∈ 𝒮, the empirical measure for at least one 𝑝 ∈ 𝑆 is zero.

Example 2 Returning to Example 1, suppose that we
observe (𝑝1, 𝑝2, 𝑝3). Then for the trivial poset 𝑝𝛥, the
empirical depth is 𝐷𝑛 (𝑝𝛥) = 1/2. For the set 𝑝4 given by
the transitive hull of {(𝑦3, 𝑦1)}, the value of the empirical
depth is zero. For 𝑝𝑡𝑜𝑡𝑎𝑙 given by the transitive hull of
{(𝑦1, 𝑦3), (𝑦3, 𝑦2)}, the empirical depth value is again zero.

4. Properties of the UFG Depth and 𝒮

For a better understanding of the ufg depth, we now discuss
some properties of𝐷𝑛 and𝒮. The properties of𝐷𝑛 describe
the mutual influence between the (empirical) measure and
the ufg depth while the properties of 𝒮 can be used to
improve the computation time.

4.1. Properties of the (Empirical) UFG Depth

The following statements are given for 𝐷𝑛. Those properties
which focus on the empirical measure and not on the
concrete sample values can be transferred to 𝐷. The first
observation is that the ufg depth

(P1) considers the orders as a whole, not just pairwise
comparisons.

More precisely, the ufg depth cannot be represented as a
function of the sum-statistics(

𝑤 (𝑎,𝑏) := #{𝑖 ∈ {1, . . . , 𝑛} | (𝑎, 𝑏) ∈ 𝑝𝑖}
)
(𝑎,𝑏) ∈𝑀×𝑀

of the pairwise comparisons,8 see Theorem 7.
Remarkably, this concretization of this property formal-

izes precisely the analogy to the ontic notion of non-standard
data mentioned at the beginning: Computing the depth of
a partial order cannot be broken down via simple sum-
statistics, but requires the partial order as a holistic entity.
This is due to the fact that the involved set operations within
the closure operator 𝛾 rely on the partial orders as a whole.
In Section 3, we defined the ufg depth in terms of two

cases. If there exists at least one element 𝑆 ∈ 𝒮 such that
every 𝑝 ∈ 𝑆 has a positive empirical measure, then 𝐷𝑛 . 0.
In Corollary 3 we specify this

(P2) non-triviality property.

8Note that many classical approaches rely only on the sum-statistics.
For example within the Bradly-Terry-Luce model (cf., [6, p. 325]) or
the Mallows𝛷 model (cf., [13, p. 360]), the likelihood function that is
maximized depends only on the data through the sum-statistics.
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We claim that 𝐷𝑛 ≡ 0 occurs only when either the entire
(empirical) probability mass lies on one poset or when the
(empirical) probability mass is on two posets where the
transitive reduction differ only in one pair.
The next observation relates to how the sampled posets

affect the ufg depth value. For example, let us recall Exam-
ple 1 and Example 2. From the structure of the sample, we
can immediately see that 𝑝𝛥 has a nonzero depth and that
𝑝𝑡𝑜𝑡𝑎𝑙 must have a depth of zero. For this

(P3) implications of the sample on 𝐷𝑛 property,

let 𝑝 = (𝑝1, . . . , 𝑝𝑛) be a sample from P. Let (𝑦1, 𝑦2) ∈
𝑀 ×𝑀 such that for all 𝑖 ∈ {1, . . . , 𝑛}, (𝑦1, 𝑦2) ∉ 𝑝𝑖 . Then
for every 𝑝 ∈ P with (𝑦1, 𝑦2) ∈ 𝑝, we get 𝐷𝑛 (𝑝) = 0. This
means that if a pair does not occur in any poset of the sample,
then every poset which contains this pair needs to have
zero empirical depth. Reverse, when looking at non-pairs,
a similar statement is true. Let 𝑝 ∈ P with (𝑦1, 𝑦2) ∉ 𝑝 but
for all 𝑖 ∈ {1, . . . , 𝑛}, (𝑦1, 𝑦2) ∈ 𝑝𝑖 holds. Then,𝐷𝑛 (𝑝) = 0.
This follows from Corollary 4. The influence of duplicates
on the value of the empirical ufg depth 𝐷𝑛 is immediately
apparent by using the empirical measure a𝑛. Thus, each
element in 𝒮 is weighted by the number of duplicates in
the sample {𝑝1, . . . , 𝑝𝑛}.
Conversely to Property (P3), in some cases, structure

in the sample can be inferred by the ufg depth values. In
Example 1 and Example 2, knowing only the values of
the depth function gives us some insight into the observed
posets. For example, we know that there must be at least
one pair (𝑦𝑖 , 𝑦 𝑗 ) that is an element of 𝑝𝑡𝑜𝑡𝑎𝑙 , but which is
not given by any observed poset. Moreover, the fact that 𝑝𝛥
has nonzero depth implies that there exists no pair (𝑦𝑖 , 𝑦 𝑗 )
that every observed poset has. We call this property

(P4) implications of the outliers on the sample.

More precisely, the depth value of the trivial poset, which
consists only of the reflexive part, as well as the values of
the total orders, can provide further information about the
sample. Therefore, let 𝑝𝛥 be the trivial poset, and 𝑝total be
a total order. By Corollary 4 we obtain that if 𝐷𝑛 (𝑝𝛥) = 0,
then there exists at least one pair (𝑦1, 𝑦2) which is in every
poset of the sample. The knowledge of 𝑝𝑡𝑜𝑡𝑎𝑙 leads to an
statement about the non-edges. So, if 𝐷𝑛 (𝑝total) = 0 is true,
then there exists at least one pair (𝑦1, 𝑦2) ∈ 𝑝total which is
in no poset of the sample.
The last properties have summarized how the structure of

a sample is reflected in the ufg depth and vice versa. Finally,
we have

(P5) consistency of the empirical ufg depth 𝐷𝑛.

This means that 𝐷𝑛 converges uniformly to 𝐷 almost
surely under the assumption of observing i.i.d. samples, see
Theorem 6.

4.2. Properties of 𝒮

In this subsection, we introduce some properties of𝒮, which
we use to improve the computation. The first one is

(P6) a lower bound for all 𝑆 ∈ 𝒮,

which is given by #𝑆 ≥ 2. This fact is already discussed
in Example 1. For the upper bound we use a complexity
measure of 𝒮, the Vapnik-Chervonenkis dimension (VC
dimension for short), see [44]. The VC dimension of a
family of sets 𝒞 is the largest cardinality of a set 𝐴, such
that 𝐴 can still be shattered into the power set of 𝐴 by 𝒞.9
With this, we obtain

(P7) an upper bound for all 𝑆 ∈ 𝒮

is given by #𝑆 ≤ 𝑣𝑐, with 𝑣𝑐 the VC dimension of the
closure system 𝛾(2P). The proof of the upper and lower
bound can be found in Theorem 5. Note that in our case of
posets, the VC dimension is small compared to the number
of all posets.
We conclude with the observation that

(P8) the elements of 𝒮 are connected

in the sense that for every 𝑆 ∈ 𝒮 with #𝑆 = 𝑚 ≥ 3, there is
an 𝑆 ∈ 𝒮 such that 𝑆 ( 𝑆 and #𝑆 = 𝑚 − 1, see Theorem 2.

5. Comparing Machine Learning Algorithms
Before turning to our actual application, we first indicate,
which possible contributions our methodology based on
data depth in the context of poset-valued data is able to
add to the general task of analyzing machine learning (ML)
algorithms beyond pure benchmarking considerations. The
basic task of performance comparison of algorithms is very
common in machine learning (cf., [17] and the references
therein). Our methodological contribution deviates from
the typical benchmark setting with regard to at least two
points:
(I) First, we compare algorithms not with respect to one

unidimensional criterion like, e.g., balanced accuracy, but
instead we look at a whole set of performance measures.
We then judge one algorithm as at least as good as another
one if it is not outperformed with respect to any of these
performance measures. With this, for every data set, we get
a partial order of algorithms and since we are not looking
at only one, but a whole population/sample of data sets, we
get a poset-valued random variable.
(II) Second, we are not interested in the question which

algorithm is in some certain sense the best or competitive,

9To be more precise: The intersection between a set 𝐴 and a family
of sets 𝒞 is defined by 𝐴∩ C = {𝐴∩𝐶 | 𝐶 ∈ 𝒞}. We say that a set 𝐴
can be shattered (by 𝒞) if #(𝐴∩𝒞) = 2#𝐴 holds. The VC dimension of
𝒞 is now defined as 𝑣𝑐 = max{#𝐴 | (𝐴∩𝒞) = 2#𝐴}.
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etc. Instead, we are interested in the question how the
relative performance of different algorithms is distributed
over a population/sample of different data sets. Analyzing
the distribution of performance relations is in our view a
research question of its own statistical importance that may
add further insights to analyses in the spirit of e.g., [21]
which are of most importance when it comes to choosing
between different machine learning algorithms.

These both deviations can have very different motivations:
The analysis of a multidimensional criteria (of performance,
here) is already motivated in the fact that in a general
analysis, different performance measures are in the first
place conceptually on an equal footing (at least, if one has no
further concrete, e.g., decision-theoretic desiderata at hand).
Therefore it appears natural to takemore than onemeasure at
the same time into account. Beyond this, there are far more
possible motivations for dealing with multidimensional
criteria of performance: For example for classification, if
one accounts for the impact of distributional shifts within
covariates, then one aspect to consider is that for different
covariate distributions, the class balance of the class labels
will vary, which can naturally be captured by either looking
at different weightings of the true positives and the true
negatives within the construction of a classical performance
measure10 or alternatively by taking into account different
discrimination thresholds for the classifiers simultaneously,
which would correspond to looking at a whole region of
the receiver operating characteristic.
Also the motivation for the second point can be manifold:

Generally, it seems somehow naive to search for one best
algorithm per se. For example, the scope of application of an
algorithm can vary very strongly and therefore, for different
situations, different algorithms could be the best, or in
certain situations different algorithms can be comparable in
its performance, or, on the other hand, incomparable if one
looks at different performance measures at the same time.
Generally, it can be of high interest, how the conditions
between different algorithms change over the distribution of
different data sets or application scenarios. For example, if in
one very narrowly described data situation the performances
of different algorithms vary extremely from case to case,
but not so much across algorithms, then, at some point it
would become more or less hopeless to search for a best
algorithm in the training phase, because one knows that in
the prediction setting, the situation is too different to the
training situation.
Another aspect is outlier detection: If one knows that in a

large, maybe automatically generated benchmark suite there
are data sets that have some bad data quality (for example

10Note that usual performance measures are more or less simple
transformations of the vector of the true positives and the true negatives
(and the class balance).

if some covariates are meaningless because of some data
formatting error etc.), then, it would be reasonable to try to
exclude such outlying data sets from a benchmark analysis
beforehand. Candidates of such outliers are then naturally
data sets with a low depth value.

6. Application on Classifier Comparison
After this motivation, we now apply our ufg depth on poset-
valued data: each poset arises from comparison of classifiers
based on multiple performance measures on a data set.

6.1. Implementation

Let (𝑝1, . . . , 𝑝𝑛) be a sample of posets. There are two
difficulties in computing 𝐷𝑛. First, going through each
subset of {𝑝1, . . . , 𝑝𝑛} is very time-consuming, especially
since the subsets that are an element of𝒮 can be very sparse
in 2{𝑝1 ,..., 𝑝𝑛 }. Second, it is difficult to test whether a subset
is an element of 𝒮 or if it is not an element.
The first part can be improved by using the lower and

upper bound on the cardinality of 𝑆 ∈ 𝒮, see Section 4. Here
we use a binary integer linear programming formulation
described in [37, p.33f] to compute the VC dimension.
Further, we use the connectedness of the elements 𝑆 ∈ 𝒮,
see Property (P8) in Section 4. With this, we do not have
to go through every subset that lies between the lower and
upper bounds, but can stop the search earlier.
To checkwhether a subset 𝑃 ⊆ {𝑝1 . . . , 𝑝𝑛} is an element

of𝒮, we begin with two observations: First, Condition (C2)
implies that there must exist a poset 𝑝 that does not lie
in any closure operator output of any proper subset of 𝑃.
(This follows from the extensivity of the closure operator 𝛾.)
Second, Condition (C2) implies Condition (C1) for ℓ ≥ 2,
since only for ℓ = 1 we cannot define a family (𝐴𝑖)𝑖∈{1,...,ℓ }
consisting of proper subsets of 𝑃 such that for every 𝑝 ∈ 𝑃

there exists an 𝑖 ∈ {1, . . . , 𝑛} with 𝑝 ∈ 𝐴𝑖 .
By Property (P6), we know that for any 𝑆 ∈ 𝒮, #𝑆 ≥ 2

is true. So we only need to check if Condition (C2) is
true. Thus, we want to find a poset 𝑝 which is given only
by the entire set 𝑃. Suppose that 𝑝 is such a poset. Then⋂
�̃�∈𝑃

𝑝 ⊆ 𝑝 ⊆ ⋃
�̃�∈𝑃

𝑝 and for every 𝑝 ∈ 𝑃 at least one of the

following statements is true:

(𝑇1) �̃� There exists a pair (𝑦1, 𝑦2) ∈ 𝑝 with (𝑦1, 𝑦2) ∈ 𝑝. But
for all other 𝑝 ∈ 𝑃 \ 𝑝, (𝑦1, 𝑦2) ∉ 𝑝 is true.

(𝑇2) �̃� There exists a pair (𝑦1, 𝑦2) ∉ 𝑝 with (𝑦1, 𝑦2) ∉ 𝑝. But
for all other 𝑝 ∈ 𝑃 \ 𝑝, (𝑦1, 𝑦2) ∈ 𝑝 is true.

Thus, none of these 𝑝’s can be deleted since then 𝑃 \ 𝑝

does not contain 𝑝 in the closure output of 𝛾 anymore.
After this analysis of the candidate 𝑝. we are now interested
in the construction of the candidate 𝑝. First, observe that
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for every 𝑝 ∈ P and 𝑖 ∈ {1, 2} one can collect all pairs
(𝑦 (𝑇 𝑖) �̃�
1 , 𝑦

(𝑇 𝑖) �̃�
2 ) which can be used to ensure that (𝑇𝑖) �̃�

holds. Set 𝑝𝑀 = ∩ �̃�∈𝑃 𝑝. For every element 𝑝 ∈ 𝑃 choose
one pair (𝑦 (𝑇 𝑖) �̃�

1 , 𝑦
(𝑇 𝑖) �̃�
2 ). Now, add those pairs to 𝑝𝑀 with

𝑖 = 1. Compute 𝑡ℎ(𝑝𝑀 ) and for every 𝑝 for which we
chose (𝑦 (𝑇 𝑖) �̃�

1 , 𝑦
(𝑇 𝑖) �̃�
2 ) with 𝑖 = 2, check that 𝑝 is necessary

to obtain 𝑝𝑀 in the output of the closure operator. If
this holds for any 𝑝 where a pair with 𝑖 = 2 is chosen,
and 𝑡ℎ(𝑝𝑀 ) ⊆ ∪ �̃�∈𝑃 𝑝, then 𝑝𝑀 is a poset that ensures
Condition (C2). Thus, by going through all combinations of
(𝑦 (𝑇 𝑖) �̃�
1 , 𝑦

(𝑇 𝑖) �̃�
2 ), we can check whether such a poset exists.

It is sufficient to pick for each 𝑝 precisely one (𝑦 �̃�1 , 𝑦 �̃�2 )
since 𝑡ℎ(𝑝) ⊆ 𝑡ℎ(𝑝) is true if 𝑝 ⊆ 𝑝.
All in all, we improved the computation compared to

the naive approach by using the knowledge provided in
Section 4. Now, we can specify a worst and best case by
the bounds. By further including the improved testing of
Condition (C1) and (C2) and the connectedness property, we
could decrease the computation time, although we currently
cannot calculate the exact amount in general as this depends
on the complexity of the data set used. Note that even the
upper bound is not fixed, but depends on the structure of
the data set. In our application, see Section 6.2 and 6.3, we
consider 80 posets. The naive approach is not computable
in reasonable time since one would have to compute and
test each subset of the 80 posets. The approach above then
leads to a computation time of approximately four hours.

6.2. Data Set

To showcase the application of the ufg depth on machine
learning algorithms we use openly available data from the
OpenML benchmarking suite [43].
In our comparison we include the following supervised

learning methods: Random Forests (RF, implemented in
the R-package ranger [45]), Decision Tree (CART, im-
plemented via the rpart library [41]), Logistic regression
(LR), L1-penalized logistic regression (Lasso, implemented
through the glmnet library [14]) and k-nearest neighbors
(KNN, through the kknn library [16]). As stated in the
OpenML experiment-documentation all methods are run
with default settings of the corresponding libraries. Hence,
our application analyzes the behavior of methods using
default settings and does not necessarily extend to general
statements about the performance of hyperparameter-tuned
versions of the respective algorithms. The algorithms were
chosen as a selection of widely used supervised learning
methods that perform reasonably without much tuning, in
contrast to methods such as neural networks or boosting,
which require considerable tuning to perform well.
From the available data sets for which results for all

above algorithms are available in the OpenML database,
we limit our analysis to binary classification data sets with

Figure 1: Heatmap representing the sum-statistics, see
Footnote 9.

more than 450 and less than 10000 observations, leading
us to a total of 80 data sets for comparison. The data sets
come from a variety of domains and strongly vary in their
class balance as well as their overall difficulty. Included in
our multidimensional criteria comparison are the measures
area under the curve, F-score, predictive accuracy and
Brier score. These performance measures capture different
aspects of performance, especially in the case of unbalanced
data sets.
The corresponding posets then result from the multi-

dimensional criteria comparison. It should be noted that
rescaling the performance measures does not change the
posets. This follows from the fact that the posets defined here
do not depend on the absolute differences but on whether
or not the multiple performance measures are better in all
dimensions.

6.3. Analysis

The resulting poset-valued set consists of 80 posets, 58
of which are unique. Each of the 58 unique posets have a
different depth value. The sum-statistics, see Footnote 4,
which count for each pair the number of occurrences along
the 80 posets, can be seen in Figure 1. It shows that RF is
very often above all other methods. So if one only looks at
the sum-statistics RF is clearly the strongest method. The
other methods are more balanced with respect to each other.
Note that due to reflexivity the diagonal is always 80.
The most central poset with the maximum depth value

is a total order and can be seen in Figure 2. Its depth
value is 0.34. The poset with the highest depth value also
has the most duplicates, meaning it is the most common
pattern. As described in Section 5, we are interested in
the distribution of the observed posets. Nevertheless, we
can consider the poset with the highest depth value as the
poset whose structure is the most common one. Or, in other
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Figure 2: Observed poset with maximal (left) and minimal
(right) ufg depth. On the left-hand side RF domi-
nates every other algorithm and in contrast on the
right-hand side RF is dominated by every other.

words, this poset is the one that is most supported based on
all observations. Comparing this to Figure 1 or, e.g., the
results in [21], we see many similarities, such as LR often
has worse performance than the other algorithms, and RF
dominates all other algorithms in many cases. In contrast to
the sum-statistics which here give a representative poset, the
strength of our method is that we not only obtain one single
poset structure, but also a distribution over the set of posets.
Note that in general the order given by the sum-statistics is
not a poset, i.e. their might exist cycles.

Figure 3 describes which edges the posets with the
𝑘 ∈ {1, . . . , 80} highest depth values have in common. For
example, one can observe that the dominance of RF over all
classifiers based on all four performance measures holds for
the 35 posets with the highest depth values. In particular,
any other classifier dominance (like CART outperforms
KNN according to all performance measures), does not
hold for the 35 posets with the highest depth values. For
example that CART outperforms KNN is only true for the
13 deepest posets. Note that the posets with the highest 46
depth values have nothing more in common. Conversely,
it is of interest to see what non-edges the posets have in
common. Since the poset with the highest depth value is the
total order, this is immediately apparent in Figure 3. The
posets with 𝑘 ∈ {1, . . . , 80} highest depth values have those
non-edges in common, which are given by the inversely
ordered poset of highest depth value intersecting with the
inversely already deleted ones. For example, the posets with
the nine highest depth values have in common that the RF
is not dominated by CART, CART not by KNN and KNN
not by Lasso, but they do not agree on LASSO being not
dominated by LR since the poset with the 8th highest depth
value does not agree on this.

Figure 3: Represents what the observed posets with the 𝑘
highest depth values have in common. Compare
with Figure 2, where the poset with the highest
depth value is plotted. Here each edge number
𝑘th indicates that the k deepest posets all contain
this relation, but this is not true for the 𝑘 + 1
deepest poset.

Unlike the posets with the highest depth values, the posets
with low depth values do not have much in common. The
posets with the tenth lowest depth values only agree on
RF being dominated by another classifier. After that, no
structure holds. All of these posets can be seen as outlier,
or in other words, the corresponding data sets produce a
performance structure on the classifiers which differ from
the structure given by other data sets. The poset with the
smallest depth value, which is 0.05, can be seen on the right
side of Figure 2.
Finally, we want to give a notion of dispersion of the

depth function. Therefore, we compute the depth function
for every poset 𝑝 ∈ P and compute the proportion of posets
which lie in 𝛼 ∈ [0, 1] deepest observed depth values. For
𝛼 = 0.25, 0.5 and 0.75 we get 0.02, 0.10 and 0.26. Thus,
the empirical ufg depth seems to be clustered on small parts
of the set P.
To summarize, the concept of depth functions allowed us

to get valuable insight in the typical order of the analyzed
classifiers. Further, it detects data sets where the structure of
the classifiers, given by the performance measures, seems
to have unusual structure.

7. Conclusion
In this paper, we have shown how samples of poset-valued
random variables can be analyzed (descriptively) by utiliz-
ing a generalized concept of data depth. For this purpose,
we first introduced an adaptation of the simplicial depth,
the so-called ufg depth, and studied some of its properties.
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Finally, we illustrated our framework with the example of
comparing classifiers using multiple performance measures
simultaneously. There are several promising avenues for
future research, that include (but are not limited to):

Other ML Problems and Criteria: Here, we focused
on the comparison of classifiers by a set of unidimensional
performance criteria. For example, the performance of
different optimization algorithms could be also of interest.
Further, the analysis of classifiers with respect to other
criteria could be an interesting modification. For example
one could useROCcurves or criteria that do also take the fact
into account that classical performance measures are only
estimates of the true out of sample performance. Within our
order-based approach this would be easily incooperateable.

Discussion on computation time: In Section 6.1 we
briefly discussed the computation time and the difficulty of
predicting it. For a deeper understanding further analyses,
e.g. in form of a simulation study, would be helpful.

Inference:A first step towards inference for poset-valued
random variables is already made by the consistency prop-
erty in Section 4. Natural next tie-in points are provided
by regression and statistical testing. Together with the re-
sults for modeling in [5], a complete statistical analysis
framework for poset-valued random variables would then
be achieved.

Other types of non-standard data: Our analysis frame-
work is by no means limited to poset-valued random vari-
ables. Since the ufg depth is based on a closure operator,
all non-standard data types for which a meaningful closure
operator exists can be analyzed with it. As seen in [5] such
closure operators are easily obtained by formal concept
analysis, thus, there exists a natural generalization of the
ufg depth for non-standard data.

Appendix A. Proofs of Section 4
The next part presents the proof of the properties given
in Section 4. First, for a fixed 𝑝 ∈ P, we give a different
representation of the sets 𝑆 ∈ 𝒮 with 𝑝 ∈ 𝑆.

Lemma 1 For 𝑝 ∈ P we get

{𝑆 ∈ 𝒮 | 𝑝 ∈ 𝛾(𝑆)} (1)

=
⋂

(𝑦𝑖 ,𝑦 𝑗 ) ∈𝑝
{𝑆 ∈ 𝒮 | ∃𝑥 ∈ 𝑆 : (𝑦𝑖 , 𝑦 𝑗 ) ∈ 𝑥} ∩ (2)⋂

(𝑦𝑖 ,𝑦 𝑗 )∉𝑝
{𝑆 ∈ 𝒮 | ∃𝑥 ∈ 𝑆 : (𝑦𝑖 , 𝑦 𝑗 ) ∉ 𝑥}. (3)

Proof Let 𝑝 ∈ P. The proof is divided into two parts.
Part 1: We prove ⊆. Let 𝑆 be an element of (1). Since
𝑝 ∈ 𝛾(𝑆), we have 𝑝 ⊆ ∪ �̃�∈𝑆 𝑝. So for every (𝑦𝑖 , 𝑦 𝑗 ) ∈ 𝑝

there is a 𝑝 ∈ 𝑆 such that (𝑦𝑖 , 𝑦 𝑗 ) ∈ 𝑝. Therefore, 𝑆 is an
element of the intersection of (2). Also from 𝑝 ∈ 𝛾(𝑆) we

get∩ �̃�∈𝑆 𝑝 ⊆ 𝑝 and thus we know that for every (𝑦𝑖 , 𝑦 𝑗 ) ∉ 𝑝

there exists a 𝑝 ∈ 𝑆 such that (𝑦𝑖 , 𝑦 𝑗 ) ∉ 𝑝. Thus, 𝑆 is an
element of the intersection given by (3).
Part 2: We prove ⊇. Therefore, let 𝑆 ∈ 𝒮 be an element of
the right-hand side of the equation. We show that 𝑝 ∈ 𝛾(𝑆).
Let 𝑆 be in the intersection given by (2). Then we know
that for every (𝑦1, 𝑦2) ∈ 𝑝 there exists an 𝑝 ∈ 𝑆 such that
(𝑦1, 𝑦2) ∈ 𝑝. Thus 𝑝 ⊆ ∪ �̃�∈𝑆 𝑝. The second part of the
intersection given by (3) analogously yields that∩ �̃�∈𝑆 𝑝 ⊆ 𝑝.
Hence 𝑝 ∈ 𝛾(𝑆) and the second part is proven. The claim
follows from Part 1 and Part 2.

The next theorem provides some information about the
properties of the elements in 𝒮.

Theorem 2 The family of sets 𝒮 given in Section 3 fulfills
the following properties.

1. For every 𝑝 ∈ P, {𝑝} ∉ 𝒮.

2. Let {𝑝1, 𝑝2} = 𝑆 ∈ 2P . Then 𝑆 ∉ 𝒮 iff the transitive re-
ductions 𝑡𝑟 (𝑝1) and 𝑡𝑟 (𝑝2) differ only on one (𝑦𝑖 , 𝑦 𝑗 )
which is only contained in exactly either 𝑡𝑟 (𝑝1) or
𝑡𝑟 (𝑝2). This means that either #(𝑡𝑟 (𝑝1) \ 𝑡𝑟 (𝑝2)) = 1
or #(𝑡𝑟 (𝑝2) \ 𝑡𝑟 (𝑝1)) = 1 holds.

3. 𝒮 is connected in the sense that for every set 𝑆 ∈ 𝒮

of size 𝑚 ≥ 3 there exists a subset 𝑆 ( 𝑆 of size 𝑚 − 1
that is in 𝒮, too.

Proof Claim 1. follows directly from Condition (C1) of the
definition of 𝒮 as 𝛾({𝑝}) = {𝑝} for every 𝑝 ∈ P.
Now, we show the second claim. Let us first assume

that {𝑝1, 𝑝2} = 𝑆 ∉ 𝒮. Then there exists no 𝑝 ∈ P such
that 𝑝 ∈ 𝛾(𝑆) \ {𝑝1, 𝑝2}. Thus, the intersection must be
either 𝑝1 or 𝑝2, (otherwise 𝑝1 ∩ 𝑝2 ∈ 𝛾(𝑆) \ 𝑆). W.l.o.g.,
let 𝑝1 = 𝑝1 ∩ 𝑝2. Then 𝑝2 must be a superset of 𝑝1 where
there is no poset lying between 𝑝1 and 𝑝2. Therefore,
#{𝑡𝑟 (𝑝2) \ 𝑡𝑟 (𝑝1)} = 1 is true. Conversely, assume that
𝑆 ∈ 𝒮 and that 𝑝1 is a superset of 𝑝2. With this we obtain
that 𝛾(𝑆) = {𝑝 ∈ P | 𝑝2 ⊆ 𝑝 ⊆ 𝑝1}. Further assume that
#{𝑡𝑟 (𝑝1) \ 𝑡𝑟 (𝑝2)} = 1 holds. But then 𝛾(𝑆) = 𝑆 is true,
since no 𝑝 ∈ P can lie between 𝑝1 and 𝑝2, but this is a
contradiction which proves the claim.
The proof of the last part uses that the closure operator 𝛾

stems from a formal context, which is a term from formal
concept analysis. Since formal concept analysis is not part
of this paper, we have outsourced the proof to [36].

Using the theorem above, we can determine properties
for a such that 𝐷 ≡ 0 is true.

Corollary 3 𝐷 (𝑝) = 0 for every 𝑝 ∈ P iff the measure a

has either the entire positive probability mass on a single
poset 𝑝 or only on exactly two posets 𝑝1 and 𝑝2 where the
transitive reduction differs only in a pair (𝑦1, 𝑦2). More
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precisely, either #{𝑡𝑟 (𝑝1) \ 𝑡𝑟 (𝑝2)} = 1 or #{𝑡𝑟 (𝑝2) \
𝑡𝑟 (𝑝1)} = 1.

Proof Note that 𝐷 (𝑝) = 0 for every 𝑝 ∈ P is true if for all
𝑆 ∈ 𝒮,

∏
�̃�∈𝑆 a(𝑝) = 0. Theorem 2 1. and 2. provide the

cases when this holds which proves immediately the claim.
The converse follows analogously from Theorem 2.

We use Lemma 1 to prove the sample influence:

Corollary 4 Let (𝑝1, . . . , 𝑝𝑛) be a sample of P. Let a𝑛 be
the empirical probability measure induced by (𝑝1, . . . , 𝑝𝑛).
Furthermore, let a𝑛 be such a probability measure that
𝐷𝑛 . 0. Then for 𝐷𝑛 defined in Section 3, it holds.

1. Assume that for all 𝑝𝑖 ∈ {𝑝1, . . . , 𝑝𝑛}, (𝑦1, 𝑦2) ∈ 𝑝𝑖
is true. Then for every poset 𝑝 ∈ P with (𝑦1, 𝑦2) ∉ 𝑝,
𝐷𝑛 (𝑝) = 0 follows.

2. Assume that for all 𝑝𝑖 ∈ {𝑝1, . . . , 𝑝𝑛}, (𝑦1, 𝑦2) ∉ 𝑝𝑖
holds. Then for every poset 𝑝 ∈ P with (𝑦1, 𝑦2) ∈ 𝑝,
𝐷𝑛 (𝑝) = 0 is true.

3. Let 𝑝𝛥 be the poset consisting only of the reflexive part.
If 𝐷𝑛 (𝑝𝛥) = 0, then there exists a pair (𝑦1, 𝑦2) such
that for all 𝑝𝑖 ∈ {𝑝1, . . . , 𝑝𝑛}, (𝑦1, 𝑦2) ∈ 𝑝𝑖 .

4. Let 𝑝𝑡𝑜𝑡𝑎𝑙 ∈ P be a total order. If 𝐷𝑛 (𝑝𝑡𝑜𝑡𝑎𝑙) = 0,
then there exists a pair (𝑦1, 𝑦2) ∉ 𝑝𝑡𝑜𝑡𝑎𝑙 such that for
all 𝑝𝑖 ∈ {𝑝1, . . . , 𝑝𝑛}, (𝑦1, 𝑦2) ∈ 𝑝𝑖 is true.

Proof First, note that for 𝑆 ∈ 𝒮, where there exists an
𝑝 ∈ 𝑆 such that a𝑛 (𝑝) = 0, 𝑆 contributes nothing to
𝐷𝑛. So one can replace 𝒮 in the definition of 𝐷𝑛 by
�̃� = {𝑆∩{𝑝1, . . . , 𝑝𝑛} | 𝑆 ∈ 𝒮}. The reduced set �̃� is used
to show the claims.
Claims 1., 2.,3. and 4. are analogous. Hence, here we

prove only Claim 1. Let (𝑦1, 𝑦2) ∈ 𝑀 × 𝑀 such that
for all 𝑖 ∈ {1, . . . , 𝑛} (𝑦1, 𝑦2) ∈ 𝑝𝑖 and let 𝑝 ∈ P such
that (𝑦1, 𝑦2) ∉ 𝑝. Let 𝑆 ∈ 𝒮 ∩ {𝑝1, . . . , 𝑝𝑛} and take
a closer look at (3) of Lemma 1. Since (𝑦1, 𝑦2) ∉ 𝑝, 𝑆
cannot be an element of the intersection of (3). Thus,
{𝑆 ∩ {𝑝1, . . . , 𝑝𝑛} ∈ 𝒮 | 𝑝 ∈ 𝛾(𝑆)} is empty and with the
comment above we get that 𝐷𝑛 (𝑝) = 0.

The next theorem gives an upper and lower bound on the
cardinality of the elements 𝑆 ∈ 𝒮.

Theorem 5 For 𝒮, as defined in Section 3, #𝑆 ≥ 2 and
#𝑆 ≤ 𝑣𝑐 is true for all 𝑆 ∈ 𝒮, where 𝑣𝑐 is the VC dimension
of the set 𝛾(2P).

Proof Let 𝑆 ∈ 𝒮. The proof for #𝑆 ≥ 2 follows immediately
from Theorem 2.
To prove #𝑆 ≤ 𝑣𝑐 take an arbitrary subset 𝑄 =

{𝑝1, . . . , 𝑝𝑘 } ∈ 𝒮 of size 𝑘 > 𝑣𝑐. Then this subset is
not shatterable and thus there exists a subset 𝑅 ⊆ 𝑄 that

cannot be obtained as an intersection of𝑄 and some 𝛾(𝑆). In
particular, with the extensivity of 𝛾 it follows 𝛾(𝑅) ∩𝑄 ) 𝑅

which means that there exists an order 𝑝𝑖 in 𝛾(𝑅) ∩ 𝑄\𝑅
for which the formal implication 𝑅 → {𝑝𝑖} holds. Thus,
(because of the Armstrong rules, cf., [1, p. 581]) the order
𝑝𝑖 is redundant in the sense of 𝑄\{𝑝𝑖} → 𝑄 and thus 𝑄
is not minimal with respect to 𝛾. Therefore, 𝑄 is not in 𝒮
which completes the proof.

Finally, we show the consistency of 𝐷𝑛.

Theorem 6 𝐷𝑛 converges almost surely uniformly to 𝐷

for 𝑛 to infinity.

Proof Due to the i.i.d assumption and the law of large num-
bers, we know that for every 𝑝 ∈ P, ‖a𝑛 (𝑝) − a(𝑝)‖ 𝑛→∞→ 0
almost surely (a.s). Since #P is finite, we get that a𝑛 also
converges a.s. uniformly to a. Finally, we use that 𝐷𝑛 and
𝐷 are both the same finite composition of a𝑛 and a, respec-
tively, and we obtain sup𝑝∈P ‖𝐷𝑛 (𝑝) − 𝐷 (𝑝)‖ 𝑛→∞→ 0 a.s.

The last theorem states a contradiction to the claim that 𝐷
can be represented via pairwise comparisons.

Theorem 7 𝐷𝑛 cannot be represented as a function of the
sum-statistics 𝑤 (𝑎,𝑏) .

Proof We simply give two data sets D = (𝑝1, 𝑝2, 𝑝3)
and D̃ = (𝑝1, 𝑝2, 𝑝3) on the basic set 𝑀 = {𝑦1, 𝑦2, 𝑦3}
with the same sum-statistics but different associated depth
functions: Let 𝑝1, 𝑝2 and 𝑝3 be given as the transitive
reflexive closures of {(𝑦1, 𝑦2)}; {(𝑦1, 𝑦2), (𝑦1, 𝑦3)} and
{(𝑦2, 𝑦3), (𝑦1, 𝑦3)}, respectively. Let 𝑝1, 𝑝2 and 𝑝3 be the
transitive reflexive closure of {(𝑦1, 𝑦2)}; {(𝑦1, 𝑦3)} and
{(𝑦1, 𝑦2), (𝑦2, 𝑦3)}, respectively. Then both data sets have
the same sum-statistics𝑤 (𝑦1 ,𝑦2) = 𝑤 (𝑦1 ,𝑦3) = 2;𝑤 (𝑦1 ,𝑦3) = 1
and 𝑤 (𝑦𝑖 ,𝑦 𝑗 ) = 0 for all other 𝑦𝑖 ≠ 𝑦 𝑗 . But the ufg depth
of 𝑝1 = 𝑝1 is 1/2 w.r.t. the first data set but 7/10 w.r.t the
second data set. The corresponding code can be found at
the link mentioned in Footnote 1.
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