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Abstract
Inmost applications, uncertainty quantification in quan-
tile regression take the form of set estimates for the
regression coefficients. However, often a more infor-
mative type of uncertainty quantification is desired
where other inference-related tasks can be performed,
such as the assignment of (imprecise) probabilities
to assertions of interest about (any feature of) the re-
gression coefficients. Validity of these probabilities,
in the sense that their values are well-calibrated in a
frequentist sense, is fundamental to the trustworthiness
of the drawn conclusions. This paper presents a non-
parametric Inferential Model (IM) construction that
offers provably valid probabilistic uncertainty quan-
tification in quantile regression, even in finite sample
settings. It is also shown that this IM can be used to
derive finite sample confidence regions for (any feature
of) the regression coefficients. As a result, regardless
of the type of uncertainty quantification desired, the
proposed IM offers an appealing solution to quantile
regression problems.
Keywords: quantile regression, inferential models, pos-
sibility measure, nonparametric, finite sample, validity,
model-free, confidence region

1. Introduction

Regression analysis is a crucial statistical method in data
science that uses the values of explanatory variables 𝑋 ∈
ℝ𝑝, where 𝑝 ≥ 1, to explain or predict the mean values
of a quantitative response variable 𝑌 . While the primary
focus of regression is usually on estimating the conditional
mean of 𝑌 given 𝑋 , there may be instances where it is more
appropriate to estimate a conditional quantile of 𝑌 given 𝑋 .
For example, if 𝑌 has outliers, modeling the median as a
measure of central tendency, rather than the mean, may be a
more effective approach.More generally, in situations where
the conditions of linear regression are not met, quantile
regression can be a useful alternative, as it does not require
any assumptions about the distribution of the target variable.
Fix a probability 𝜏 ∈ (0, 1) and let 𝑄𝑥 (𝜏) denote the 𝜏th

conditional quantile of 𝑌 , given 𝑋 = 𝑥. Then the quantile
regression model says

𝑄𝑥 (𝜏) = 𝑥>\, (1)

where \ = \𝜏 ∈ ℝ𝑝 is the vector of regression coef-
ficients of interest. Quantification of uncertainty about
the value of \ is desired. Moreover, because quantiles
are quantities whose existence does not depend on as-
sumed parametric models for the distribution of 𝑌 given
𝑋 = 𝑥, nonparametric/distribution-free solutions are often
preferred in order to avoid model misspecification bias.
The quantification of uncertainty about \ is often car-

ried out by producing a suitable family of set estimates
that are at least approximate confidence regions, i.e., set
estimates that have coverage probability guarantees at least
in an asymptotic sense. There are multiple techniques for
generating these regions, including bootstrapping, covari-
ance matrix estimation of quantile estimates, and rank-test
inversion methods. A comprehensive overview of these and
other methods can be found in Koenker (2005), Chapter 3.
In Chernozhukov et al. (2009), a similar approach to the
rank-test method is proposed, but with improved coverage
guarantees in finite samples.
In some application, there may be interest in a more

complete type of uncertainty quantification, one that allows
for assignments of (imprecise) probabilities to all relevant
assertions of interest about \. The Bayesian approach is,
of course, probabilistic, but its application to quantile re-
gression faces the challenge of having to circumvent the
specification of a parametric likelihood. Several authors
have attempted different working likelihoods for Bayesian
or “Bayesian-like” quantile regression, e.g., asymmetric
Laplace distributions (Yu and Moyeed, 2001; Yang et al.,
2016), empirical likelihood (Yang and He, 2012), Dirichlet
process mixture models (Kottas and Krnjajić, 2009), an infi-
nite mixture of normals (Reich et al., 2009), exponentiated
empirical risk (Martin and Syring, 2022), among others.
But before committing to one these approaches for proba-
bilistic inference on quantile regression, where the posterior
distributions obtained from the working likelihoods above
can be used to derive posterior probabilities for assertions
about \, it is crucial to determine the validity of these
posterior probabilities. This means that it is important to
verify whether they are accurately calibrated in a frequentist
sense.
The sameway validity of set estimates is always desirable,

so that erroneous conclusions are controllably rare, so is,
or should be, validity of probability assignments. When a
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posterior distribution is used to evaluate the probability of
a certain statement about \, the size of this probability will
be used to draw inference about whether the statement is
true or false. To reduce the likelihood of making incorrect
conclusions, it is desirable to control the rate at which the
posterior distribution assigns small probabilities to true
statements and large probabilities to false statements. This
topic is further discussed in Section 2.
Unfortunately, the aforementionedBayesian or “Bayesian-

like” solutions to quantile regression do not examine the
validity of probability assignments. Instead, they only verify
if the posterior regions, derived from the posterior distri-
bution, are approximate confidence regions. For example,
Empirical Likelihood quantile regression has been shown to
have asymptotically calibrated posterior regions for the com-
ponents of \ (Yang and He, 2012), while Yang et al. (2016)
acknowledge the lack of calibration of posterior regions
based on other working likelihoods and recommend ad-
justments to achieve approximate confidence regions when
using Laplace distributions. Similarly, when the exponenti-
ated empirical risk function is adopted, Martin and Syring
(2022) recommend adjustments for the same purpose.
However, the calibration of posterior regions for \ does

not guarantee the validity of posterior probabilities for
statements about \. The false confidence theorem in Balch
et al. (2019) states that probabilistic inferences based on
additive probabilities are at risk of being invalid, indicating
the need for new considerations if the goal is to make valid
probabilistic inferences in quantile regression.

Inferential Models (IMs) is a relatively new probabilistic
approach to statistical inference; see Martin and Liu (2013,
2015) for the first considerations, and Martin (2019) for
a modern perspective. Contrary to the Bayesian approach,
the IM’s probability assignments are non-additive. This
and the specific way that they are constructed make IMs
dodge the false confidence bullet, being, to my knowledge,
the only probabilistic approach with validity guarantees,
even in finite sample settings. However, the original IMs
construction requires specifying a parametric likelihood
for the data, which can limit its application to quantile
regression.
This issue was addressed in Cella and Martin (2022a)

when a general IMs construction for model-free problems
was proposed, which only requires a suitable loss function
that defines the unknown quantity of interest. Koenker and
Bassett (1978) show that the quantile regression coefficient
\ is a risk-minimizer with respect to the loss function

ℓ\ (𝑥, 𝑦) = |𝑦 − 𝑥>\ | − (2𝜏 − 1)𝑥>\.

A nonparametric IM for quantile regression can be then
obtained from it, as Cella and Martin do in Section 4.3 of
their paper. The main limitation of this approach is that it
only achieves validity in an asymptotic sense, due to its

dependence on bootstrap samples. As mentioned above,
finite sample validity is a unique feature of parametric
IMs, so, here, I attempt to maintain this property in a new
nonparametric IM construction for quantile regression. This
is just a single application of a general framework that aims
to deliver valid probabilistic inference for a broad range of
model-free problems. The full details of the framework will
be presented in Cella and Martin (2023).
More specifically, my goal in the present paper is to

develop a nonparametric IM for finite sample valid proba-
bilistic inference on quantile regression. The specific con-
struction, presented in Section 3, is surprisingly simple,
relying primarily on calculations involving the binomial
distribution. Before that, a background on IMs is given in
Section 2. I conclude in Section 4 with a brief summary
and discussion of some open problems.

2. Background on IMs
To set the scene, let data 𝑍𝑛 = (𝑍1, . . . , 𝑍𝑛) take values in
a general enough space ℤ𝑛. That is, besides the case we are
mainly interested here, where 𝑍𝑖 = (𝑋𝑖 , 𝑌𝑖) is a predictor
and response variable pair,ℤ𝑛 can take other forms, e.g., the
real line, a matrix space, etc. Following the modus operandi
in most applications, consider that a statistical model 𝑃𝑛

𝜔 ,
indexed by a parameter 𝜔 ∈ 𝛺, is assumed for 𝑍𝑛. Note
that the unknown parameter 𝜔 completely specifies the
distribution of 𝑍𝑛, so 𝜔 is the inferential target. To put
it another way, any quantity of interest \ ∈ 𝛩 related to
the distribution of 𝑍𝑛, such as quantiles or moments, are
invariably a function of 𝜔, i.e., \ = \ (𝜔). Inferences on \
are, therefore, obtained indirectly from inferences on 𝜔.
As stated in Section 1, my focus here is on probabilistic

inference, where (imprecise) probability assignments to all
sorts of assertions about 𝜔 can be obtained. Moreover, I
will consider the cases where no prior information about
𝜔 is assumed or available. The question then arises: can a
probabilistic approach provide validity guarantees in this
prior-free setting?
Several attempts to answer this question, that Bradley

Efron calls the “most important unresolved problem in
statistics” (Efron, 2013), have been made. Perhaps more
popular are the ones whose output probability assignments
are additive, e.g., Fisher’s fiducial approach (Fisher, 1935),
generalized fiducial (Hannig et al., 2016), confidence distri-
butions (Xie and Singh, 2013; Schweder and Hjort, 2016),
and Bayes with default priors (Berger, 2006). However,
these approaches may be problematic in light of the False
confidence theorem presented in Balch et al. (2019). This
theorem is a significant result that highlights the potential
invalidity of probabilistic inference based on additive prob-
abilities, suggesting that the key to a definitive solution to
Efron’s most important problem may be non-additivity.
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Despite the existence of various frameworks that output
non-additive probabilities, e.g., Dempster–Shafer theory
(Dempster, 2014, 1967, 1968, 2008; Shafer, 1976) and
other belief function frameworks (Denœux and Li, 2018;
Denœux, 2014), Inferential Models (Martin and Liu, 2015)
is, to the best of my knowledge, the only framework that
provides assurance of validity. In what follows, the notion
of validity is made precise, and a brief overview of the IM’s
specific construction to achieve it is exposed.
Let 𝐴 ⊆ 𝛺 be an assertion of interest about 𝜔. For the

observed data 𝑍𝑛 = 𝑧𝑛, denote the IM’s non-additive output
for the claim “𝜔 ∈ 𝐴” by 𝛱 𝑧𝑛 (𝐴). Consider a scenario
where a small 𝛱 𝑧𝑛 (𝐴) is encountered. This indicates that
the assertion 𝐴 is implausible, which may lead a data
scientist to conclude that 𝐴 is false. However, if 𝛱 𝑍𝑛 (𝐴),
as a function of data 𝑍𝑛 ∼ 𝑃𝑛

𝜔 , tends to be small even when
𝐴 is actually true, the data analyst risks making “systematic
misleading conclusions” (Reid and Cox, 2015). The goal of
the validity criteria is to mitigate this risk by ensuring that
erroneous conclusions are controllably rare. More formally,
a valid IM with output 𝛱 𝑧𝑛 satisfies

sup
𝜔∈𝐴

𝑃𝑛
𝜔{𝛱 𝑍𝑛 (𝐴) ≤ 𝛼} ≤ 𝛼,


for all 𝛼 ∈ [0, 1],
for all 𝐴 ⊆ 𝛺,

for all 𝑛.
(2)

The IM’s upper probability 𝛱 𝑧𝑛 takes the mathematical
form of a possibility measure (Dubois and Prade, 1988).
Interestingly, Martin (2021) argued that IMs of this form
are the most efficient, so there is no need to consider non-
additive measures with more general structures.
The possibilistic nature of the IM’s output has two im-

portant implications. First, it implies the existence of a
possibility contour 𝜋𝑧𝑛 , which fully determines the possi-
bility measure for any assertion of interest through

𝛱 𝑧𝑛 (𝐴) = sup
𝜔∈𝐴

𝜋𝑧𝑛 (𝜔).

Set estimates for 𝜔 can be readily derived from the IM’s
plausibility contour. Its validity, i.e.,

𝑃𝑛
𝜔{𝜋𝑍𝑛 (𝜔) ≤ 𝛼} ≤ 𝛼, for all 𝛼 ∈ [0, 1],

guarantees the frequentist error rates control of these set
estimates. In other words, set estimates obtained from the
IM’s plausibility contour are confidence regions. More
details about this will be presented in Section 3. Second,
possibility measures have a dual 𝛱 𝑧𝑛 (𝐴) = 1 − 𝛱 𝑧𝑛 (𝐴𝑐),
known as necessity measures. As a result, IMs can also
be characterized in terms of them. More importantly, the
“for all 𝐴 ⊆ 𝛺” clause in (2) makes possible an equivalent

validity result for the IM’s necessity measures:

sup
𝜔∈𝐴

𝑃𝑛
𝜔{𝛱 𝑍𝑛 (𝐴) ≥ 1 − 𝛼} ≤ 𝛼,


for all 𝛼 ∈ [0, 1],
for all 𝐴 ⊆ 𝛺,

for all 𝑛.

In words, false assertions tend to be assigned relatively low
necessity with respect to the posited statistical model. This
prevents systematically misleading conclusions.
The duality between possibility and necessity measures,

as well as their equivalent validity does not diminish the
importance of either measure. In fact, considering both
measures can help prevent themisuse of statistics in practical
applications, especially those related to p-values. For further
details, see Cella and Martin (2022b).
When the ultimate quantity of interest is \ = \ (𝜔),

possibility measures for assertions about \ can be obtained
via marginalization through the mapping 𝜔 → \:

𝛱 𝑧𝑛 (𝜔 : \ (𝜔) ∈ 𝐴), 𝐴 ⊆ 𝛩. (3)

Once again, since (2) includes the “for all 𝐴 ⊆ 𝛺” clause,
the IM’s validity property carries over immediately to
marginal inferences on \. Of course, this marginal valid-
ity is contingent on correctly specifying the distribution
𝑃𝑛
𝜔 . However, this assumption may not be reasonable de-
pending on the nature of \. For instance, if \ doesn’t
determine the data’s distribution, it might be better to use
nonparametric/distribution-free solutions to avoid biases
caused by model misspecification.; see Section 3.
But how are IMs constructed? The first approach, pre-

sented in Martin and Liu (2013, 2015), introduces an auxil-
iary variable𝑈𝑛 with a known distribution and expresses
the statistical model in terms of it:

𝑍𝑛 = 𝑎(𝜔,𝑈𝑛), 𝑈𝑛 ∼ P𝑛
𝑘𝑛𝑜𝑤𝑛.

While the value of 𝑈𝑛 cannot be observed, knowing its
distribution allows for educated predictions about its value.
Martin and Liu suggest using appropriate random sets (e.g.,
Nguyen, 2006; Molchanov, 2005) to predict the value of
𝑈𝑛, and the properties of these sets are crucial to ensuring
the validity of the possibility measures in (2). More recently,
it has been recognized that IMs can also be constructed
directly from possibility measures that quantify uncertainty
about𝑈𝑛 (Liu and Martin, 2021). A more recent alternative
construction skips the specification of auxiliary variables
and is motivated by the probability-to-possibility transform
presented in Hose and Hanss (2020, 2021); see Martin
(2022a,b). Here, I will focus on this direct approach.
Let ℎ : (ℤ𝑛 × 𝛺) → ℝ be a measurable function and

define the possibility contour

𝜋𝑧𝑛 (𝜔) = 𝑃𝑛
𝜔{ℎ(𝑍𝑛, 𝜔) ≤ ℎ(𝑧𝑛, 𝜔)}, 𝜔 ∈ 𝛺. (4)

111



Cella

According toMartin (2022b), this simple construction yields
the plausibility contour of a valid IM. However, the choice
of ℎ plays a crucial role, as it determines a partial ordering
of candidate values for 𝜔 given 𝑧𝑛. Martin (2022b) refers
to this ordering as the plausibility order.
To determine the best ℎ for a given situation, where

“best” is related to the efficiency of the resulting plausibility
contour, Martin (2022b) appeal to what Hose calls the
Principle of Plausibility, which suggests choosing the ℎ that
represents the plausibility order inherent in the assumed
statistical model 𝑃𝑛

𝜔 . Therefore, it is straightforward to take
ℎ to be the probability mass or density function of 𝑃𝑛

𝜔 .

3. Nonparametric IMs for Quantile
Regression

My focus on the present paper is on quantile regression,
so data 𝑍𝑛 = (𝑍1, . . . , 𝑍𝑛) consist of 𝑛 covariate/response
pairs, i.e., 𝑍𝑖 = (𝑋𝑖 , 𝑌𝑖). The goal is to make inferences
on the quantiles of the conditional distribution of 𝑌 given
𝑋 . More formally, let 𝑄𝑥 (𝜏) in (1), 𝜏 ∈ (0, 1), denote the
𝜏th conditional quantile of 𝑌 , given 𝑋 = 𝑥. The vector
of regression coefficients \ = \𝜏 ∈ ℝ𝑝 is, therefore, the
inferential target.
The IM construction presented in Section 2 is powerful,

but it has limitations that make it unsatisfactory for quantile
regression applications. The primary limitation is that this
approach requires the specification of a parametric statistical
model for the data, namely, a distribution 𝑃𝑛

𝜔 that is indexed
by a parameter 𝜔 ∈ 𝛺 for 𝑍𝑛. However, since the quantile
regression parameters \ do not uniquely determine the
distribution of the data, 𝜔 is not equivalent to \. As a result,
inferences on \ must be obtained indirectly through (3).
This indirect approach to inferring \ can be problematic if
𝑃𝑛
𝜔 is misspecified, as the IM validity property in (2) relies
on the assumed model being accurate.
To avoid potential biases resulting from model mis-

specification, it is preferable to proceed without explicitly
specifying a model. My assumption is that 𝑍𝑛 consists of
independent and identically distributed (iid) components,
with 𝑍𝑛 ∼ 𝑃𝑛. Note that i) 𝑃 is free to be any distribution,
no constraints due to dependence on a parameter 𝜔; and
ii) the regression coefficients of the quantile regression
\ = \ (𝑃) are a functional of the underlying distribution.
Is it possible to develop a nonparametric IM that can

generate valid probabilistic inferences for \ even in finite
sample settings? First, it is essential to understand how
different the desired validity in a model-free context is
from (2). Let 𝛱 𝑧𝑛 (𝐴) be the potential nonparametric IM
possibilistic quantification of uncertainty about an assertion
𝐴 of interest.While it may seem reasonable to infer 𝐴𝑐 when
𝛱 𝑧𝑛 (𝐴) is small, this approach may not be trustworthy if
𝛱 𝑍𝑛 (𝐴) tends to be small for 𝑍𝑛 ∼ 𝑃𝑛 when \ ∈ 𝐴. As

discussed in Section 2, the purpose of validity is to make
these erroneous conclusions controllably rare. Hence, the
desired validity property can be defined as follows:

sup
𝑃:\ (𝑃) ∈𝐴

𝑃𝑛
{
𝛱 𝑍𝑛 (𝐴) ≤ 𝛼

}
≤ 𝛼,


for all 𝛼 ∈ [0, 1],
for all 𝐴 ⊆ 𝛩,

for all 𝑛.
(5)

It is worth noting that a nonparametric IM construction for
quantile regression has been proposed in Cella and Martin
(2022a). However, this approach relies on bootstrap samples,
and as a result, it can only achieve the validity property in
(5) as 𝑛 approaches infinity. The objective here is to develop
a method that can achieve validity for any sample size.
As discussed in Section 2, the IM construction for para-

metric problems relies on a crucial step, namely the speci-
fication of a real-valued function ℎ that establishes a plau-
sibility order for potential values of the model parameters
based on the observed data. By applying the probability
calculation in (4), a valid IM plausibility contour can be
obtained. In essence, the proposed nonparametric IM con-
struction for quantile regression will follow the same logic.
Notably, this approach is just one specific instance of a
general framework for finite sample valid probabilistic in-
ference in distribution-free problems that will be outlined
in Cella and Martin (2023).
Let ℎ : (ℤ𝑛 × 𝛩) → ℝ be a measurable function that

provides a plausibility order for candidate values of the
regression coefficients \ given the observed data 𝑧𝑛. As
we’ll see below, it will be the case that ℎ(𝑍𝑛, \) is discrete.
Moreover, consider that its distribution, as a function of 𝑍𝑛,
is known and independent of unknown quantities. Then

𝜋𝑧𝑛 (\) = 𝑃𝑛{ℎ(𝑍𝑛, \) ≤ ℎ(𝑧𝑛, \)}, \ ∈ 𝛩, (6)

is the plausibility contour of a finite sample valid and
nonparametric IM for \.

Theorem 1 The nonparametric IM for \ defined above,
with contour given by (6), is valid in the sense of (5).

Proof Fix 𝑃 and let \ = \ (𝑃). Also, let 𝐺 denote the
(known) distribution of ℎ(𝑍𝑛, \). Note that 𝜋𝑧𝑛 (\) in (6) can
be written as 𝜋𝑧𝑛 (\) = 𝐺 (ℎ(𝑧𝑛, \)). Therefore, it follows
immediately that 𝜋𝑍𝑛 (\), as a function of 𝑍𝑛 ∼ 𝑃𝑛, is
stochastically no smaller than Unif(0, 1), i.e.,

𝑃𝑛
{
𝜋𝑍𝑛 (\) ≤ 𝛼

}
= 𝑃𝑛

{
𝐺 (ℎ(𝑍𝑛, \)) ≤ 𝛼

}
≤ 𝛼. (7)

Now, for any assertion 𝐴 that contains \, the monotonicity
of plausibility measures imply that 𝛱 𝑧𝑛 (𝐴) ≥ 𝜋𝑧𝑛 (\).
Therefore,

𝑃𝑛
{
𝛱 𝑍𝑛 (𝐴) ≤ 𝛼

}
≤ 𝛼.

Taking a supremum over all 𝑃 such that \ (𝑃) ∈ 𝐴 on the
left-hand side above completes the proof.
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Besides being the key to the IM possibilistic quantifica-
tion of uncertainty about general assertions of interest about
\, the plausibility contour in (6) can also be used to generate
set estimates for \ that have coverage probability guarantees
in finite sample settings. As the following corollary shows,
if 𝐶𝛼 (𝑧𝑛) denote the 𝛼 level sets of the possibility contour,
i.e.,

𝐶𝛼 (𝑧𝑛) = {\ ∈ 𝛩 : 𝜋𝑧𝑛 (\) > 𝛼}, 𝛼 ∈ [0, 1], (8)

then the IM validity imply that 𝐶𝛼 (𝑧𝑛) is a finite sample
100(1 − 𝛼)% confidence region for \.

Corollary 2 The 𝛼 level sets of the possibility contour in
(8) are finite sample 100(1− 𝛼)% confidence regions in the
sense that

sup
𝑃

𝑃𝑛
{
𝐶𝛼 (𝑍𝑛) ∌ \ (𝑃)

}
≤ 𝛼, 𝛼 ∈ [0, 1] .

Proof Fix 𝑃 and let \ = \ (𝑃). Observe that 𝐶𝛼 (𝑍𝑛) ∌ \ if
and only if 𝜋𝑍𝑛 (\) ≤ 𝛼. Then the claim follows immediately
from (7).

In certain applications, there may be particular features
of the regression coefficients \ that are of primary interest.
Denote them by 𝜙 = 𝜙(\). For example, in a single covariate
case, such features might include:

• 𝜙 = \1, which represents the slope of the quantile
regression line;

• 𝜙 = \0 + \1x, which represents the quantile of 𝑌 given
𝑋 = 𝑥;

• 𝜙 =
𝑞−\0
\1
, which represents the value of 𝑋 that yields

a quantile equal to q.

A marginal IM for any feature 𝜙 can be obtained from
that for \. That is, define the possibility contour

𝜋
𝜙

𝑧𝑛
(𝜑) = sup

𝜗:𝜙 (𝜗)=𝜑
𝜋𝑧𝑛 (𝜗), 𝜑 ∈ 𝜙(𝛩).

Note that, as a direct consequence of (7), 𝜋𝜙

𝑍𝑛 (𝜑), as a
function of 𝑍𝑛 ∼ 𝑃𝑛, is also stochastically no smaller
than Unif(0, 1). Therefore, finite sample valid possibility
measures can be assigned to assertions about 𝜙 as it was
done before for \:

𝛱
𝜙

𝑧𝑛 (𝐴) = sup
𝜑∈𝐴

𝜋
𝜙

𝑧𝑛
(𝜑), 𝐴 ⊆ 𝜙(𝛩).

Moreover, the set

{𝜑 ∈ 𝜙(𝛩) : 𝜋𝜙

𝑧𝑛
(𝜑) > 𝛼} (9)

constitutes a finite sample 100(1 − 𝛼)% confidence region
for 𝜙.

The above results suggest that the proposed nonpara-
metric IM is a powerful alternative to quantile regression,
regardless of the type of uncertainty quantification that is
desired. More specifically, the proposed IM can be utilized
for both probabilistic inference on (features of) the regres-
sion coefficients \ and for the provision of set estimates for
(features of) \. Both types of uncertainty quantification are
accurately calibrated in a frequentist sense, irrespective of
the sample size.
But the question of how to obtain a suitable ℎ, a fun-

damental element in the IM construction, remains to be
addressed. In Cella and Martin (2023), a general strategy
suitable for various model-free problems will be provided.
For quantile regression, this strategy involves identifying
a function 𝛾 = 𝛾(𝑍𝑛, \) of the data 𝑍𝑛 and the regression
coefficients \ that is a pivot, i.e., that has a distribution that
is independent of \ or any other unknowns. Once a suitable
pivot has been identified, the plausibility order ℎ can be
selected based on its probability mass.
Perhaps the most intuitive pivot in quantile regression is

𝛾 =

𝑛∑︁
𝑖=1

𝐼 (0,∞) (𝑌𝑖 − 𝑥>𝑖 \), (10)

where 𝐼𝐵 (𝐴) is the indicator that even A belongs to B.
In words, (10) is the sum of the indicators of the sign of
𝑌𝑖 − 𝑥>

𝑖
\. Given the independence of the 𝑌 ’s given 𝑋 = 𝑥

and the assumption that 𝑥>\ is the true 𝜏-th quantile, (10)
follows a Bin(𝑛, 1 − 𝜏) distribution. One can then use the
probability mass of this binomial as the plausibility order
ℎ, i.e.,

ℎ =

(
𝑛

𝛾

)
(1 − 𝜏)𝛾𝜏𝑛−𝛾 , (11)

and derive an IM plausibility contour from (6). Even though
Theorem 1 guarantees the validity of this solution, I’ll argue
next that it can be very inefficient, so new considerations
are needed. To build intuition, it will be helpful to consider,
separately, the case where the levels of the covariates are
fixed, in the sense that there are replications of 𝑌 given
𝑋 = 𝑥, and the case where at least one of the covariates is
continuous, so there is no replication of 𝑌 for any 𝑋 = 𝑥.

3.1. Fixed Covariates

Let’s assume that the levels of the covariates are fixed, in
the sense that there are replications of 𝑌 in the levels of 𝑋 .
For example, there may be interest in studying the effect
of 𝑘 specific doses 𝑥1, 𝑥2, . . . , 𝑥𝑘 of a certain medication 𝑋
in some response variable 𝑌 . For a given 𝑥𝑖 , 𝑖 = 1, . . . , 𝑘 ,
𝑛𝑖 instances of 𝑌 are observed, i.e., 𝑌𝑖1, . . . , 𝑌𝑖𝑛𝑖 . In this
setting, (10) can be rewritten as

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐼 (0,∞) (𝑌𝑖 𝑗 − 𝑥>𝑖 \).
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x

y

x1 x2 x3 x4

Figure 1: Simple illustration for the median regression
when the levels of 𝑋 are fixed.

Note that this is the sum of 𝑘 independent binomial distribu-
tions with size 𝑛𝑖 and success probability 1−𝜏. Therefore, it
still follows a Bin(𝑛, 1 − 𝜏) distribution, where ∑𝑘

𝑖=1 𝑛𝑖 = 𝑛.
Figure 1 illustrates this scenario with 𝑘 = 4 and 𝑛1 =

𝑛2 = 𝑛3 = 𝑛4 = 4. For simplicity but without loss of
generality, suppose that interest is in the median regression,
i.e., 𝜏 = 0.5. The lines in the graph aid in understanding
why using ℎ as in (11) is not optimal. This choice results
in a plausibility order where any line that splits the data in
half — with half of the points above and half below the
line — is equally maximally plausible. As a result, such a ℎ
cannot distinguish between the three lines in Figure 1, even
though it is clear that they are not equally desirable. This
inefficiency motivates the consideration of an alternative
approach.
Towards this, I suggest considering each one of the 𝑘

independent binomials separately, and using the product of
their probability masses as the plausibility order ℎ. In other
words, my suggestion consists of taking ℎ to be the like-
lihood function of the independent binomially distributed
pivots that arise at each level of 𝑋:

ℎ =

𝑘∏
𝑖=1

(
𝑛𝑖

𝛾𝑖

)
(1 − 𝜏)𝛾𝑖𝜏𝑛𝑖−𝛾𝑖 , (12)

where

𝛾𝑖 =

𝑛𝑖∑︁
𝑗=1

𝐼 (0,∞) (𝑌 𝑗 − 𝑥𝑖\), 𝑖 = 1, . . . , 𝑘 .

It is worth noting that, unlike (11), (12) yields different
plausibilities for the lines in Figure 1. Specifically, the black
line, which is the most desirable option, maximizes (12),
while the blue and red lines minimize it.

As an illustration, let 𝑋 = (0.5, 1, 1.5) and 𝑛1 = 𝑛2 =
𝑛3 = 10. Let 𝑌𝑖 = `(𝑋𝑖) + 𝜖 (𝑋𝑖), where `(𝑥) = 6 + 𝑥,
and 𝜖 (𝑥) ∼ N

(
0, (0.1 + 0.1𝑥)2

)
. Figure 2(a) displays one

simulated data set. Suppose the interest is in the median
regression line, so 𝜏 = 0.5 and \ = (6, 1). Figure 2(b)
shows the empirical distribution function of 𝜋𝑧𝑛 (\), with ℎ
as in (12), in a simulation study where the above scenario
is repeated 1000 times and 𝜋𝑧𝑛 (\) is calculated as in (6),
in each replication. Note that (7) and, therefore, validity
is verified. The same simulation is repeated for 𝜏 = 0.25
and 𝜏 = 0.75, showing that the proposed IM’s validity is
not specific to the median regression. Figure 2(c) shows,
in red, the 95% confidence region for \ obtained from (8)
with ℎ as in (12), for the data in Figure 2(a). The 95%
confidence region in black is obtained from using ℎ as in
(11), confirming the lack of efficiency that arises from such
choice.

3.2. Continuous Covariates

Let us now consider the scenario where at least one of
the covariates is continuous, so that there is no replication
of 𝑌 for any given 𝑋 = 𝑥. The problem with choosing ℎ
as in (11), discussed in Section 3.1 above, still persists in
this case. Once again, for simplicity, but without loss of
generality, suppose that interest is in the median regression.
Here, any line that divides the data in half — with half of
the points above and half below the line — such as the three
lines in Figure 3, would be equally good. The alternative
plausibility order in (12), shown to be effective when the
levels of 𝑋 are fixed, does not solve the problem here; it
actually exacerbates it. Specifically, for any candidate \,
(12) is equal to 0.5𝑛, as 𝑛𝑖 = 1 for all 𝑖. As a result, not only
are the three lines in Figure 3 equally good, but any line,
including those that do not divide the data in half.
It appears that an alternative solution is necessary when

the levels of 𝑋 are not fixed. Luckily, this alternative solution
need not be entirely distinct from the one in Section 3.1. This
is because, while we do not have independent replications
of 𝑌 for each 𝑋 = 𝑥, we do have independent replications
of 𝑌 in neighborhoods of 𝑋 . If 𝑘 neighborhoods of 𝑋 are
formed, the idea is to consider each one of the independent
binomials that arise in each of the 𝑘 neighborhoods sepa-
rately, and to use the product of their probability masses
as the plausibility order ℎ. For example, in the case of one
continuous covariate, we can consider a set of increasing
real numbers 𝑙1, 𝑙2, . . . , 𝑙𝑘−1 and consider the 𝑛𝑖 replications
of 𝑌 given that 𝑙𝑖−1 < 𝑋 < 𝑙𝑖 , 𝑖 = 1, . . . , 𝑘 , where 𝑙0 and 𝑙𝑘
are −∞ and +∞, respectively. Then

𝛾𝑖 =

𝑛𝑖∑︁
𝑗=1

𝐼 (0,∞) (𝑌 𝑗 − 𝑥 𝑗\),
{
𝑙𝑖−1 < 𝑥 𝑗 < 𝑙𝑖 ,

𝑖 = 1, . . . , 𝑘,
(13)
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Figure 2: Panel (a): Data. Panel (b): Empirical CDF of
the plausibility contour evaluated at the true
quantile regression line based on 1000 Monte
Carlo sample. Panel (c): 95% confidence regions
for \, obtained from (8).

are independent and follow a Bin(𝑛𝑖 , 1−𝜏) distribution. The
plausibility order in (12) can then be used. Consider 𝑘 = 2

x

y

Figure 3: Simple illustration for the median regression
when 𝑋 is continuous.

and 𝑙1 to be the median of the observed 𝑋’s in Figure 3. In
this case, 𝛾1 and 𝛾2 are iid Bin(5, 0.5). Note how, based on
(12), the black, red and blue candidate median regression
lines in Figure 3 have, as desired, a descending plausibility
order.
When dealing with multiple explanatory variables, i.e.,

𝑋 ∈ ℝ𝑝 with 𝑝 ≥ 2, there are various possible ways to
construct neighborhoods around 𝑋 . Perhaps an effective one
is to use unsupervised clustering algorithms like K-means
(Celebi and Aydin, 2016). These techniques can efficiently
group data points into clusters, making them a natural
choice for creating neighborhoods in higher dimensional
spaces. Additional details and examples of these approaches
in high-dimensional settings will be presented elsewhere.
As an illustration, let 𝑋𝑖

iid∼ Unif(0, 5), 𝑖 = 1, . . . , 𝑛, with
𝑛 = 30, and let 𝑌𝑖 = `(𝑋𝑖) + 𝜖 (𝑋𝑖), where `(𝑥) = 6 + 0.1𝑥,
and 𝜖 (𝑥) ∼ N

(
0, (0.1 + 0.1𝑥)2

)
. Figure 4(a) displays one

simulated data set. Interest here is in \ = \𝜏 for 𝜏 = 0.3
which, in this case, is roughly equal to (5.95, 0.05). In (13),
I will consider 𝑘 = 2 and 𝑙1 equal to the median of 𝑋 and
then use ℎ as in (12) for the IM construction. To check
validity of the resulting plausibility contour, I simulate
1000 data sets according the above scheme and calculated
𝜋𝑧𝑛 (\) as in (6) in each replication. Figure 4(b) shows the
empirical distribution of these values. It is clear that it
is stochastically no smaller than the uniform distribution,
confirming Theorem 1. The same simulation is repeated for
𝜏 = 0.6 and 𝜏 = 0.9. Validity is verified in all scenarios. For
further illustration, I also extracted 95% interval estimates
for the components of \ through (9) from these 1000 data
sets. This type of uncertainty quantification is popular in
quantile regression applications. The goal was to compare
the estimated coverage probabilities and mean length of
the IM intervals with those obtained from the quantreg and
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\ IM Rank Bayes
\0 0.99 (1.11) 0.88 (0.43) 0.96 (0.44)
\1 0.98 (0.48) 0.83 (0.19) 0.88 (0.18)

Table 1: Estimated coverage probabilities and mean length
of 95% interval estimates for the quantile regres-
sion coefficients based on the proposed IM, the
method based on the inversion of rank tests and the
Bayesian-like method that uses the asymmetric
Laplace distribution as the working likelihood.

bayesQR packages in R (Koenker et al., 2022; Benoit and
Van den Poel, 2017), which are based on, respectively, the
inversion of rank tests (Gutenbrunner et al., 1993; Hušková,
1994; Koenker, 2005) and the use of asymmetric Laplace
distribution as the working likelihood for a “Bayesian-like”
solution (Yu and Moyeed, 2001; Yang et al., 2016). The
results are summarized in Table 1. As expected, the IM
intervals are finite sample confidence intervals. However,
the intervals obtained from the other two approaches are
not always wide enough to achieve the correct coverage
probability for 𝑛 = 30. Finally, Figure 4(c) shows, in red,
the 95% confidence regions for \, obtained from (8), for
the single data set displayed in Figure 4(a). The 95% confi-
dence region in black is obtained from using ℎ as in (11),
confirming, once again, the lack of efficiency that arises
from such choice.

4. Conclusion
This paper introduces a new nonparametric IM construc-
tion for probabilistic inference on quantile regression. It is
demonstrated that this approach is valid, in the sense of The-
orem 1. Specifically, the IM’s possibility assignments to all
assertions about (features of) the quantile regression coeffi-
cients are calibrated in a statistical sense. Importantly, this
calibration is not just asymptotic, but holds for any sample
size. Additionally, this achieved validity does not exclude,
but rather complements, the often-desired calibration of set
estimates. This means that the proposed nonparametric IM
can also be used to obtain finite sample confidence regions
for (features of) the quantile regression coefficients.
It’s worth mentioning that the framework presented in

this paper, which focuses on quantile regression, is actually
more versatile than just this one context. The approach of
identifying a function of data and inferential target that acts
as a pivot and using its likelihood to establish the plausibility
order in the IM construction can be applied to a wide range
of relevant model-free problems, thereby producing finite
sample valid probabilistic inferences for these problems.
The full details of this general framework will be presented
in Cella and Martin (2023).
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Figure 4: Panel (a): Data. Panel (b): Empirical CDF of
the plausibility contour evaluated at the true
quantile regression line based on 1000 Monte
Carlo samples. Panel (c): 95% confidence regions
for \, obtained from (8).

This section concludes with a brief discussion of some
open questions. Firstly, while I consider my choice of pivot
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to be very intuitive, it’s worth noting that there may be other
possible choices that could potentially be more effective.
An interesting follow-up project could investigate these
other options, comparing them in terms of efficiency, and
even exploring the possibility of an optimal solution. On
the topic of efficiency, a second open question is how to
best select the neighborhoods of 𝑋 that replicate 𝑌 in (13).
Specifically, does the number of neighborhoods and/or
the number of replications per neighborhood impact the
efficiency of the IM? Thirdly, a more careful investigation
is needed into the method of neighborhood formation when
dealing with multiple explanatory variables. Lastly, while
evaluating the plausibility contour in (6) is simple and only
involves calculations related to the binomial distribution,
obtaining marginal inferences for components of a potential
high-dimensional \ in an efficient manner remains an open
question.

Acknowledgments
The author thanks Professor Ryan Martin and the four
anonymous reviewers for their valuable feedback on earlier
versions of this manuscript.

References
M. S. Balch, R. Martin, and S. Ferson. Satellite conjunction
analysis and the false confidence theorem. Proceedings
of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 475(2227):20180565, 2019.

D. F. Benoit and D. Van den Poel. bayesQR: A bayesian
approach to quantile regression. Journal of Statistical
Software, 76(7):1–32, 2017.

J. Berger. The case of objective bayesian analysis. Bayesian
Analysis, 1(3):385–402, 2006.

M.E. Celebi and K. Aydin. Unsupervised Learning Algo-
rithms. Springer International Publishing, 2016.

L. Cella and R. Martin. Direct and approximately valid
probabilistic inference on a class of statistical functionals.
International Journal of Approximate Reasoning, 151:
205–224, 2022a.

L. Cella and R. Martin. Valid inferential models offer
performance and probativeness assurances. In Sylvie
Le Hégarat-Mascle, Isabelle Bloch, and Emanuel Aldea,
editors, Belief Functions: Theory and Applications, pages
219–228, Cham, 2022b. Springer International Publish-
ing.

L. Cella and R. Martin. Distribution-free inferential models
for direct and valid probabilistic inference. In preparation,
2023.

V. Chernozhukov, C. Hansen, and M. Jansson. Finite
sample inference for quantile regression models. Journal
of Econometrics, 152(2):93–103, 2009. Nonparametric
and Robust Methods in Econometrics.

A. P. Dempster. Upper and lower probabilities induced
by a multivalued mapping. Annals of Mathematical
Statististics, 38:325–339, 1967.

A. P. Dempster. A generalization of Bayesian inference.
(With discussion). Journal of the Royal Statistical Society,
Series B, 30:205–247, 1968.

A. P. Dempster. The Dempster–Shafer calculus for statisti-
cians. International Journal of Approximate Reasoning,
48(2):365 – 377, 2008.

A. P. Dempster. Statistical inference from a Dempster–
Shafer perspective. In Xihong Lin, Christian Genest,
David L. Banks, Geert Molenberghs, David W. Scott,
and Jane-Ling Wang, editors, Past, Present, and Future
of Statistical Science, chapter 24. Chapman & Hall/CRC
Press, 2014.

T. Denœux. Likelihood-based belief function: justification
and some extensions to low-quality data. International
Journal of Approximate Reasoning, 55(7):1535–1547,
2014.

T. Denœux and S. Li. Frequency-calibrated belief functions:
review and new insights. Internat. J. Approx. Reason.,
92:232–254, 2018.

D. Dubois and H. Prade. Possibility Theory. Plenum Press,
New York, 1988.

B. Efron. Discussion: “confidence distribution, the fre-
quentist distribution estimator of a parameter: A review”.
International Statistical Review, 81(1):41–42, 2013.

R. A. Fisher. The fiducial argument in statistical
inference. Annals of Eugenics, 6(4):391–398, 1935.
doi:10.1111/j.1469-1809.1935.tb02120.x. URL https:
//onlinelibrary.wiley.com/doi/abs/10.
1111/j.1469-1809.1935.tb02120.x.

C. Gutenbrunner, J. Jurečková, R. Koenker, and S. Portnoy.
Tests of linear hypotheses based on regression rank scores.
Journal of Nonparametric Statistics, 2(4):307–331, 1993.

J. Hannig, H. Iyer, R. C. S. Lai, and T. C. M. Lee. Gen-
eralized fiducial inference: A review and new results.
Journal of the American Statistical Association, 111
(515):1346–1361, 2016.

D. Hose and M. Hanss. On data-based estimation of
possibility distributions. Fuzzy Sets and Systems, 399:
77–94, 2020. Fuzzy Intervals.

117

https://doi.org/10.1111/j.1469-1809.1935.tb02120.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1935.tb02120.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1935.tb02120.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1935.tb02120.x


Cella

D. Hose and M. Hanss. A universal approach to imprecise
probabilities in possibility theory. International Journal
of Approximate Reasoning, 133:133–158, 2021.

M. Hušková. Some sequential procedures based on regres-
sion rank scores. Journal of Nonparametric Statistics, 3
(3-4):285–298, 1994.

R. Koenker. Quantile Regression. Cambridge University
Press, Cambridge, 2005. ISBN 978-0-521-60827-5; 0-
521-60827-9.

R. Koenker and G. Bassett. Regression quantiles. Econo-
metrica, 46(1):33–50, 1978. ISSN 00129682, 14680262.

R. Koenker, S. Portnoy, P. T. Ng, B. Melly, A. Zeileis,
P. Grosjean, C. Moler, Y. Saad, V. Chernozhukov,
I. Fernandez-Val, and B. D Ripley. quantreg: Quantile Re-
gression, 2022. URL https://cran.r-project.
org/package=quantreg. R package version 5.94.

A. Kottas and M. Krnjajić. Bayesian semiparametric mod-
elling in quantile regression. Scandinavian Journal of
Statistics, 36(2):297–319, 2009.

C. Liu and R. Martin. Inferential models and possibility
measures. Handbook of Bayesian, Fiducial, and Fre-
quentist Inference, to appear; arXiv:2008.06874,
2021.

R. Martin. False confidence, non-additive beliefs, and valid
statistical inference. International Journal of Approxi-
mate Reasoning, 113:39–73, 2019.

R. Martin. An imprecise-probabilistic characterization
of frequentist statistical inference. Researchers.One,
https://researchers.one/articles/21.
01.00002, 2021.

R. Martin. Valid and efficient imprecise-probabilistic infer-
ence with partial priors, i. first results. arXiv, 2022a.

R. Martin. Valid and efficient imprecise-probabilistic in-
ference with partial priors, ii. general framework. arXiv,
2022b.

R. Martin and C. Liu. Inferential models: A framework
for prior-free posterior probabilistic inference. Journal
of the American Statistical Association, 108:301–313,
2013.

R. Martin and C. Liu. Inferential Models: Reasoning
with Uncertainty. Monographs in Statistics and Applied
Probability Series. Chapman & Hall/CRC Press, 2015.

R. Martin and N. Syring. Chapter 1 - direct gibbs pos-
terior inference on risk minimizers: Construction, con-
centration, and calibration. In Arni S.R. Srinivasa Rao,

G. Alastair Young, and C.R. Rao, editors, Advancements
in Bayesian Methods and Implementation, volume 47 of
Handbook of Statistics, pages 1–41. Elsevier, 2022.

I. Molchanov. Theory of Random Sets. Probability and Its
Applications (New York). Springer-Verlag London Ltd.,
London, 2005.

H. T. Nguyen. An Introduction to Random Sets. Chapman
& Hall/CRC, Boca Raton, FL, 2006.

B. J. Reich,H.D.Bondell, andH. J.Wang. FlexibleBayesian
quantile regression for independent and clustered data.
Biostatistics, 11(2):337–352, 11 2009.

N. Reid and D. R. Cox. On some principles of statistical
inference. International Statistical Review, 83(2):293–
308, 2015.

T. Schweder and N. Lid Hjort. Confidence, Likelihood,
Probability: Statistical Inference with Confidence Distri-
butions. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 2016.

G. Shafer. A Mathematical Theory of Evidence. Prince-
ton University Press, Princeton, N.J, 1976. ISBN
9780691100425.

M. Xie and K. Singh. Confidence distribution, the fre-
quentist distribution estimator of a parameter: A review.
International Statistical Review, 81(1):3–39, 2013.

Y. Yang and X. He. Bayesian empirical likelihood for
quantile regression. The Annals of Statistics, 40(2):1102
– 1131, 2012.

Y. Yang, H. J. Wang, and X. He. Posterior inference in
bayesian quantile regression with asymmetric laplace
likelihood. International Statistical Review, 84(3):327–
344, 2016.

K. Yu and R. A. Moyeed. Bayesian quantile regression.
Statistics & Probability Letters, 54(4):437–447, 2001.

118

https://cran.r-project.org/package=quantreg
https://cran.r-project.org/package=quantreg
https://researchers.one/articles/21.01.00002
https://researchers.one/articles/21.01.00002

	Introduction
	Background on IMs
	Nonparametric IMs for Quantile Regression
	Fixed Covariates
	Continuous Covariates

	Conclusion

