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When an inference model is complex, it can also be slow and clunky. That’s why we will look at a new technique for
removing redundancies from a class of models, making it faster and easier to use. We use sets of strictly desirable gambles.
Let’s consider a finite setX that encompasses all possible outcomes of an experiment. Gambles, which are mappings from

X to a utility scale, form a real vector space denoted asℝX .We defineℝX
≥0 as the set of gambleswith non-negative components,

0 as the zero gamble, and E(𝐴) as a positive hull operator E(𝐴) B
{∑𝑛

𝑘=1 _𝑘 𝑓𝑘 : _𝑘 > 0 ∧ 𝑓𝑘 ∈ 𝐴 ∪ (ℝX
≥0 \ 0) ∧ 𝑛 ∈ ℕ

}
for any 𝐴 ∈ ℝX . If 0 ∉ E(𝐴), we say that the assessment 𝐴 is consistent, and E(𝐴) represents its natural extension. In this
context, the common approach for making inferences involves checking if a given gamble is present in the natural extension.
Now, let us examine the case where 𝐴 is finite. The most straightforward method to achieve this is by verifying

if a given gamble is greater than or equal to a positive linear combination of a finite number of gambles, which can
be solved using linear programming techniques [3]. Suppose A represents the matrix composed by concatenating the
gambles of 𝐴 as column vectors, _ is an unknown vector with |𝐴| components and 𝑔 the gamble we want to check
for inclusion in the natural extension. In this scenario, we need to determine if the following program has a solution:
find _ subject to A_ ≤ 𝑔, _ ≥ 0,∑_ ≥ 1. Alternatively, for low dimensions 𝑑 = |X|, we can compute the credal set by
finding the dual polytope, and then check whether the lower expectation is non-negative. This approach becomes more
computationally expensive for higher dimensions as the number of extreme probability mass functions given 𝑘 desirable

gambles can be as high as
(
𝑘 − d𝑑/2e
b𝑑/2c

)
+
(
𝑘 − d𝑑/2e − 1
b𝑑/2c − 1

)
, which grows exponentially in 𝑑. Computer evidence with random

polytopes suggests that for high dimension one attains this bound with high probability [2, p. 394-395].
Suppose we employ the direct approach and need to check multiple gambles for inclusion in the natural extension.

Then it can be advantageous to remove redundant gambles from 𝐴 and find another smaller gamble set 𝐴′ such that
E(𝐴′) = E(𝐴). This problem is essentially finding the extreme rays of E(𝐴), for which algorithms are typically associated
with the convex hull problem. Here the same division of approaches can be made. Some approaches, e.g. Qhull, use the
dual polytope but have problems in high dimensions due to the large number of facets [1]. Therefore many libraries, such as
CDDlib and Polyhedra.jl simply check for every 𝑎 ∈ 𝐴 if 𝑎 ∈ E(𝐴 \ {𝑎}), resulting in |𝐴| linear programs.
For consistent sets of desirable gambles (where 0 ∉ E(𝐴)), I have discovered an improved method. Initially, we

employ linear programming to find a hyperplane that intersects all rays of the set of desirable gambles. This hyperplane
can be defined as all gambles 𝑔 for which the inner product _𝑇 𝑔 = 1, where _ is the solution to the linear program
find _ subject to A𝑇 _ ≥ 1, _ ≥ 1. Then on this hyperplane we can remove one of the coordinates and find the convex hull
using |𝐴| linear programs in this lower-dimensional space. The last coordinate can be retrieved with _𝑇 𝑔 = 1.

Dim. New Naive

2 0.437 35.433

30 106.862 102.429

50 223.020 260.479

In the table I have put the median times in milliseconds of some tests, which always
involved 40 different consistent assessments 𝐴, each containing 100 gambles. In a
two-dimensional case, this method was approximately 100 times faster than the naive
method, although the two-dimensional scenario is not particularly interesting since the
lower prevision can be easily computed. The brute-force approach wins slightly until
approximately dimension 30 when the new method starts winning again. Furthermore,
I noted that as the imprecision of the ‘real’ model increased, the improvement diminished.
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