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Introduction The concept of safe Bayesian inference [4] with learning rates [5] has recently sparked a lot of research, e.g.
in the context of generalized linear models [2]. It is occasionally also referred to as generalized Bayesian inference, e.g. in
[2, page 1] – a fact that should let IP advocates sit up straight and take notice, as this term is commonly used to describe
Bayesian updating of credal sets. On this poster, we demonstrate that this reminiscence extends beyond terminology.

Generalized Bayesian Inference (1) Several papers brought forward the idea of equipping Bayesian updating with an
exponent on the likelihood, the learning rate, which we denote with 𝜂. [4] suggested its use as a method to deal with bad
misspecification and proposed the Safe-Bayesian algorithm to learn the ‘right’ 𝜂 from the data, which was instantiated and
experimented with for (generalized) linear models in [2]. The 𝜂-generalized posterior is often [4, 2] defined for general
learning problems and loss functions, and specialized to parametric models and log loss we obtain the following expression
for it: 𝜋(𝜃 | 𝑥, 𝜂) := ℓ𝑥 (𝜃)𝜂 𝜋 (𝜃)∫

𝛩
ℓ𝑥 (𝜃)𝜂 𝜋 (𝜃)𝑑𝜃

, with ℓ𝑥 (𝜃) the likelihood and 𝜋(𝜃) the prior. It has become clear that Bayesian
inference can behave badly under misspecification of the model. It is well-known that when the model is well-specified, i.e.
the true data generating process 𝑃★ is in the model F , the posterior converges fast with high 𝑃★-probability to the true
distribution in terms of Hellinger distance, under weak conditions on model and prior [5]. For misspecified models this only
holds under very strong conditions. However, it was shown that under what is called the 𝜂-central condition (which is much
milder), generalized Bayes with a specific, finite, (often < 1) learning rate 𝜂 also concentrates with high probability in the
neighborhood of the distribution 𝑃̃ ∈ F that is closest to 𝑃★ in KL-divergence, with fast rates.

Generalized Bayesian Inference (2) We observe ℓ𝑥 (𝜃)𝜂𝜋(𝜃) = ℓ𝑥 (𝜃)
[
𝜋(𝜃) ℓ𝑥 (𝜃)𝜂−1

]
. This allows us to specify a set

of priors given some base prior 𝜋(𝜃) as follows

𝛱𝜋 (𝜃) =
{
𝜋𝜈 (𝜃) | 𝜋̃(𝜃) = 𝜋(𝜃) · ℓ𝑥 (𝜃)𝜂−1, 𝜂 ∈ (0, 1); 𝜋𝜈 (𝜃) = 𝜋̃(𝜃)/𝐶𝜈 , 𝐶𝜈 =

∫
𝛩
𝜋̃(𝜃)𝑑𝜃

}
. (1)

The (unnormalized versions of the) prior functions in this credal set can be charaterized by a point-wise upper and
a (trivial) point-wise lower bound, namely 𝜋(𝜃) · ℓ𝑥 (𝜃)−1 and 𝜋(𝜃). Sets of priors with these characteristics satisfy the
requirements for Bayes theorem for unbounded priors [3, page 238], so a posterior credal set exists, see [1, chapter 2.3].
This reformulation of safe Bayesian inference offers exciting insights into why safe Bayesian allows concentration of the

posterior under model misspecification. Specifically, the unnormalized prior 𝜋̃(𝜃) = 𝜋(𝜃) · ℓ𝑥 (𝜃)𝜂
∗−1 for optimal 𝜂∗ can

help. It provides us with a counterfactual Bayesian interpretation of safe Bayesian learning: If we have had specified the prior
proportional to 𝜋̃(𝜃), we would have achieved concentration under model misspecification with regular Bayesian learning.
In this way, it conveys information on which parts of 𝛩 are relevant to the non-concentration under misspecification.
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