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Abstract
Dempster-Shafer Theory (DST) is a mathematical
framework to handle imprecision and uncertainty in
reasoning and decision making. One assumption of
DST is that of a closed-world, or the assumption that
all propositions are known a priori. In this work, we
explore an alternative formulation of Dempster-Shafer
that allows for the dynamic inclusion of new proposi-
tions. Specifically, we expand the framework to include
the complement of every set of propositions. This ad-
justment enables an open-world interpretation that can
support unspecified and dynamic propositions as we
learn about the problem space. Including complemen-
tary sets distinguishes this from previous work in DST
where the open world is attributed to the empty set. We
demonstrate our open world Dempster-Shafer Theory
on a variety of synthetic and real datasets.

1. Introduction
Dempster-Shafer Theory (DST) [26, 4] is a mathematical
theory of evidence that generalizes probability theory to
account for imprecise information. Dempster-Shafer theory
is one of many possible generalizations of probability asso-
ciated with nonadditive monotone measures [13, 30]. The
set-theoretic interpretation of DST makes it particularly
attractive for this work in complementary sets. The Demp-
ster rule of combination has been reasonably criticized for
counter-intuitive results in the face of conflict [33, 34] but
still has relevance when a product intersection combina-
tion rule is applicable. The limited range of applicability
of Dempster’s rule has led to the development of many
different combination rules ranging from conjunctive and
disjunctive operations that afford an enhanced expressibil-
ity for data and information fusion. As a consequence,
DST remains an important applied approach of imprecise

probabilities in the data fusion community. Accordingly,
DST and the related methods, Probability Bounds Anal-
ysis (PBA) [8], Generalized Evidence Theory (GET) [5],
Transferable Belief Model (TBM) [27], can be found in
a broad range of applications: target identification [3],
image analysis [2], land cover classification [14], qualifying
model predictions [11], risk analysis [9], validation and
verification in scientific computing [18], to name a few.
The basis of DST is a frame of discernment, or collection

of possible propositions one wishes to consider, sometimes
called a sample space in probability theory. Basic Probabil-
ity Assignments (BPA) are mappings that allocate mass to
subsets, called focal elements, of the frame of discernment,
indicating the degree of belief in the proposition or collec-
tion of propositions defined by the focal element. BPAs are
typically represented with the letter 𝑚 and satisfy,

𝑚 : 2𝛺 → [0, 1]∑︁
𝑢∈2𝛺

𝑚(𝑢) = 1 . (1)

In classical DST, BPAs had another constraint that 𝑚(∅) =
0. In extensions of DST such as the Transferable Belief
Model [27, 29], 𝑚(∅) can take on values in the interval
0 ≤ 𝑚(∅) ≤ 1 to represent conflict. From the BPAs, lower
and upper probability bounds for each focal element can be
derived, called the belief and plausibility respectively,

bel𝑚 (𝑢) =
∑︁
𝑣∈2𝛺
𝑣⊆𝑢
𝑣≠∅

𝑚(𝑣)

pl𝑚 (𝑢) =
∑︁
𝑣∈2𝛺
𝑣∩𝑢≠∅

𝑚(𝑣) .
(2)
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1.1. Open World Interpretation and DST

The original conception of DST assumes a closed world,
namely, that the frame of discernment is known exhaustively
a priori [26]. The closedworld assumption poses a challenge
to any theory or representation where something outside the
sample space or frame of discernment can be encountered.
There have been a variety of methods proposed to mitigate
the closed world problem or to construct openworld variants
for DST. TBM and GET address the closed world problem
by allowing mass in the empty set which can be used to
represent a level of ignorance [27, 5]. This is a departure
from the original DST concept where 𝑚(∅) = 0. This
approach is an improvement over DST for the representation
of conflict, but conflates the situation where BPAs conflict
with one another and when there is a missing proposition
from the frame of discernment.
Another method, called extended open world [23], ex-

tends the frame of discernment with an “*" singleton that
acts as a wildcard to represent all unspecified propositions.
This approach cannot systematically add unspecified propo-
sitions to the frame of discernment. Another drawback of
GET, TBM, and extended open world, is their inability
to distinguish between a single missing proposition and
multiple missing propositions without recomputation or
adjustments of BPAs.
A third open world approach to DST focuses on the

idea of non-exhaustive frames of discernment. In this there
have been various methods proposed to identify when
a frame of discernment is incomplete and incrementally
adding new propositions [31, 16, 12, 32]. These suffer from
having to re-compute BPAs and loses interpretability of the
propositions.
A frame of discernment can also be extended by taking

a Cartesian product with another frame of dissimilar focal
elements [7, 3]. This allows for extensions of BPAs from
one frame to a Cartesian product of frames by pairing
each focal element with the vacuous component in its
Cartesian product counterpart. While useful, this approach
does not provide a meaningful way to extend a frame of
discernment with another frame of similar focal elements.
A frame of discernment can be reduced in size either with
marginalization when it is a Cartesian product of frames,
or by removing focal elements to find a suitable frame by
balancing the aggregated uncertainty and the amount of
conflict [25].

1.2. Complements and DST

In addition to the precedent of work in open world inter-
pretations for DST, there is also precedent for work with
complement sets in DST [22, 20]. These are concerned
with the truth value of a proposition and employ the com-

plement to represent what is not true in source reliability
and probabilistic argumentation systems.

1.3. A New Approach

In the complementary DST approach proposed here, we
introduce additional focal elements representing comple-
ments of sets into the basic probability assignments to
represent belief of “what is not." With this we gain an open
world interpretation while still explicitly quantifying the
deficits of incomplete information. The complementary
DST generalization provides the following capabilities:

• identify when a frame of discernment is incomplete,

• combine BPAs that do not share identical frames of
discernment,

• systematically add propositions to the frame of dis-
cernment without needing to recompute BPAs.

In Section 2 we provide generalized definitions and
theorems for complementary DST, and in Section 3 we
demonstrate these capabilities on various synthetic and real
data.

2. Complementary Dempster-Shafer Theory
There are several important concepts that we generalize
for complementary DST: focal elements, BPAs, joining of
BPAs, and belief and plausibility. While the proofs of all
theorems are relatively straightforward from definitions and
identities, they are included in supplementary material for
completeness.

2.1. Complementary Basic Probability Assignments

The power of DST is the ability to assign a probability-like
mass to a set of propositions (focal element) without having
to ascribe a mass to the constituents of the set. We introduce
complementary focal elements to represent elements that
are not constituents of a set of propositions of interest.

Definition 1 Complementary focal elements are members
of the Cartesian product between the power set of a frame
of discernment and the Boolean space, (𝑢, 𝑎) ∈ 2𝛺 × 𝔹.

We use the Boolean variable, 𝑎, in (𝑢, 𝑎) ∈ 2𝛺 ×𝔹 as a flag
to differentiate between the set 𝑢 with 𝑎 = 𝑇𝑟𝑢𝑒 and the
complement of 𝑢 with 𝑎 = 𝐹𝑎𝑙𝑠𝑒. In other words, (𝑢, 𝑇𝑟𝑢𝑒)
represents the hypothesis of 𝑢, while (𝑢, 𝐹𝑎𝑙𝑠𝑒) represents
the hypothesis of everything other than 𝑢, including propo-
sitions not in the current frame of discernment.
Complementary focal elements on one frame of discern-

ment, (𝑢, 𝑎) ∈ 2𝛺1 × 𝔹 can be evaluated to focal elements
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Table 1: All complementary focal elements for frame of
discernment 𝛺 = {𝐴, 𝐵}.

(∅, 𝑇𝑟𝑢𝑒) ({𝐴, 𝐵}, 𝐹𝑎𝑙𝑠𝑒)
({𝐴}, 𝑇𝑟𝑢𝑒) ({𝐵}, 𝐹𝑎𝑙𝑠𝑒)
({𝐵}, 𝑇𝑟𝑢𝑒) ({𝐴}, 𝐹𝑎𝑙𝑠𝑒)

({𝐴, 𝐵}, 𝑇𝑟𝑢𝑒) (∅, 𝐹𝑎𝑙𝑠𝑒)

on a different frame of discernment 𝛺2 using the identities

(𝑢, 𝑇𝑟𝑢𝑒) |𝛺2 = 𝛺2 ∩ 𝑢

(𝑢, 𝐹𝑎𝑙𝑠𝑒) |𝛺2 = 𝛺2 − 𝑢 .
(3)

For example, consider the frame of discernment consist-
ing of the propositions 𝛺2 = {𝐴, 𝐵} and the complementary
focal elements listed in Table 1. We see the evaluation of
these complementary focal elements on the different frames
of discernment including 𝛺1 = {𝐴}, and 𝛺3 = {𝐴, 𝐵, 𝐶} in
Figure 1. It is evident from Figure 1(a) that if propositions
are removed in the evaluation,multiple complementary focal
elements evaluate to the same sets. In Figure 1(b) it is clear
that there are twoways to represent every set when evaluated
on its natural frame of discernment. These two representa-
tions correspond to the set itself, and the complement of the
complement of the set. Figure 1(c) demonstrates the real
power of the complementary frames of discernment, the fact
that complementary focal elements can evaluate to cover
previously unknown propositions. Specifically, both com-
plementary focal elements ({𝐴}, 𝑇𝑟𝑢𝑒) and ({𝐵}, 𝐹𝑎𝑙𝑠𝑒)
evaluate to {𝐴} on the frame of discernment 𝛺2. The com-
pelling property of the set ({𝐵}, 𝐹𝑎𝑙𝑠𝑒) is that in the event
of a new proposition, 𝐶, being added its evaluation changes
from {𝐴} in Figure 1(b) to {𝐴,𝐶} in Figure 1(c).
We use complementary focal elements to define comple-

mentary BPAs.

Definition 2 A Complementary Basic Probability Assign-
ment (CBPA) on a frame of discernment, 𝛺, is a bivariate
mapping

𝑚 : 2𝛺 × 𝔹 → [0, 1]
that satisfies

∑
𝑥∈2𝛺×𝔹

𝑚(𝑥) = 1 .

Since CBPAs are supported on complementary focal
elements, they can be evaluated on different frames of
discernments to construct traditional BPAs. A CBPA 𝑚

defined with frame of discernment 𝛺1 can be evaluated on
𝛺2 resulting in a BPA defined by

𝑚 |𝛺2 : 2𝛺2 → [0, 1]

𝑚 |𝛺2 (𝑥) =
∑︁

𝑦∈2𝛺1×𝔹
𝑦 |𝛺2=𝑥

𝑚(𝑦) . (4)

{A}
({A,B}, T rue)|Ω1

(∅, False)|Ω1

({A}, T rue)|Ω1

({B}, False)|Ω1

∅
(∅, T rue)|Ω1

({A,B}, False)|Ω1

({B}, T rue)|Ω1

({A}, False)|Ω1

(a) 𝛺1 = {𝐴}

{A,B}
({A,B}, T rue)|Ω2

(∅, False)|Ω2

{A}
({A}, T rue)|Ω2

({B}, False)|Ω2

{B}
({B}, T rue)|Ω2

({A}, False)|Ω2

∅
(∅, T rue)|Ω2

({A,B}, False)|Ω2

(b) 𝛺2 = {𝐴, 𝐵}

{A,B,C}
((∅, False)|Ω3

{A,C}
({B}, False)|Ω3

{A}
({A}, T rue)|Ω3

{A,B}
({A,B}, T rue)|Ω3

{B}
({B}, T rue)|Ω3

{B,C}
({A}, False)|Ω3

{C}
({A,B}, False)|Ω3

∅
(∅, T rue)|Ω3

(c) 𝛺2 = {𝐴, 𝐵, 𝐶}

Figure 1: Venn diagrams of all complementary focal ele-
ments from 𝛺2 = {𝐴, 𝐵} evaluated on different
frames of discernment.
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This reduces to,

𝑚 |𝛺 (𝑥) = 𝑚((𝑥, 𝑇𝑟𝑢𝑒)) + 𝑚((𝛺 − 𝑥, 𝐹𝑎𝑙𝑠𝑒)) (5)

for a CBPA𝑚 both defined and evaluated on the same frame
of discernment 𝛺.
CBPAs offer different, more nuanced representations

of conflict. For a given frame of discernment, 𝛺1, both
(∅, 𝑇𝑟𝑢𝑒) and (𝛺1, 𝐹𝑎𝑙𝑠𝑒) indicate a type of conflict in
belief as they both evaluate to the empty set on 𝛺1. How-
ever, when evaluated on a different frame of discernment,
𝛺2, their meanings diverge where (∅, 𝑇𝑟𝑢𝑒) |𝛺2 = ∅ while
(𝛺1, 𝐹𝑎𝑙𝑠𝑒) |𝛺2 = 𝛺2 − 𝛺1. This differentiation allows us
to quantify conflict and missing propositions separately and
explicitly. The mass in (∅, 𝑇𝑟𝑢𝑒) signifies the fundamen-
tal conflict between assertions. The mass in (𝛺1, 𝐹𝑎𝑙𝑠𝑒)
is ignorance that can be resolved by adding one or more
propositions missing from 𝛺1. This approach differentiates
between fundamental conflict and the ignorance that arises
from a lack of information. Significant mass in (∅, 𝑇𝑟𝑢𝑒) is
indicative of a fundamental conflict, while significant mass
in (𝛺1, 𝐹𝑎𝑙𝑠𝑒) is indicative of a missing proposition.
The dual representations of the vacuous focal element

are also noteworthy. For a given frame of discernment,
𝛺1, the sets (∅, 𝐹𝑎𝑙𝑠𝑒) and (𝛺1, 𝑇𝑟𝑢𝑒) are identical in
meaning as they both describe the whole space. When
evaluated on another frame of discernment, 𝛺2, their
meanings again diverge with (∅, 𝐹𝑎𝑙𝑠𝑒) |𝛺2 = 𝛺2 and
(𝛺1, 𝑇𝑟𝑢𝑒) |𝛺2 = 𝛺2 ∩ 𝛺1. So mass in (∅, 𝐹𝑎𝑙𝑠𝑒) is a
true vacuous belief containing no information in the belief
of any set of propositions. In contrast, mass in (𝛺1, 𝑇𝑟𝑢𝑒)
is not actually a vacuous statement, it is a statement in the
confidence of the propositions in 𝛺1.

2.2. Combining Complementary Basic Probability
Assignments

There are numerous competing rules of combination in
DST, GET, and TBM, each with their own advantages and
disadvantages. To limit the scope, we concentrate our dis-
cussion on the TBM conjunctive join rule [6]. While our
analysis concentrates on the conjunctive join, it is straight-
forward to modify our analysis to work with Dempster’s
rule of combination for DST [29], as well as various other
rules such as Yager’s rule or alternatively implement a dis-
junctive join. We first define the intersection rules between
complementary focal elements with the identities,

(𝑢, 𝑇𝑟𝑢𝑒) ∩ (𝑣, 𝑇𝑟𝑢𝑒) B (𝑢 ∩ 𝑣, 𝑇𝑟𝑢𝑒)
(𝑢, 𝑇𝑟𝑢𝑒) ∩ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B (𝑢 − 𝑣, 𝑇𝑟𝑢𝑒)
(𝑢, 𝐹𝑎𝑙𝑠𝑒) ∩ (𝑣, 𝑇𝑟𝑢𝑒) B (𝑣 − 𝑢, 𝑇𝑟𝑢𝑒)
(𝑢, 𝐹𝑎𝑙𝑠𝑒) ∩ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B (𝑣 ∪ 𝑢, 𝐹𝑎𝑙𝑠𝑒) .

(6)

These identities are best understood using a Venn diagram

u ∩ vu v

Ω

Figure 2: Venn diagram with subsets 𝑢 and 𝑣 within an
unknown global frame of discernment 𝛺.

with overlapping 𝑢 and 𝑣 regions representing arbitrary
subsets of an unknown global frame of discernment 𝛺 as
seen in Figure 2. In the figure, (𝑢, 𝑇𝑟𝑢𝑒) represents the set
𝑢 while (𝑢, 𝐹𝑎𝑙𝑠𝑒) represents the complement of 𝑢 with
respect to the unknown global set 𝛺. When applied to the
figure, the intersection identities become self-evident.
With the intersection rules specified we define the con-

junctive join operators.

Definition 3 Let 𝑚1 and 𝑚2 be CBPAs with frames of
discernment 𝛺1 and 𝛺2 respectively. The conjunctive join
𝑚1,2 = 𝑚1 ⊕𝑚2 is another CBPA with frame of discernment
𝛺1 ∪ 𝛺2, defined by

𝑚1,2 : 2𝛺1∪𝛺2 × 𝔹 → [0, 1] (7)

𝑚1,2 (𝑧) =
∑︁

𝑥∈2𝛺1×𝔹
𝑦∈2𝛺2×𝔹
𝑥∩𝑦=𝑧

𝑚1 (𝑥) · 𝑚2 (𝑦) . (8)

This is essentially Smets’ conjunctive join rule [27] applied
to CBPAs. This is able to fuse CBPAs together even if they
do not share a frame of discernment as the complementary
focal elements and intersection rules can accommodate an
unknown global frame of discernment. It is easy to see that
the conjunctive join is also a CBPA by observing that every
product 𝑚1 (𝑥) · 𝑚2 (𝑦) for 𝑥 ∈ 2𝛺1 × 𝔹 and 𝑦 ∈ 2𝛺2 × 𝔹 is
included in exactly one summation, therefore the summation
over 𝑧 is also 1.
If the global frame of discernment is known a priori,

then the evaluation of each constituent CBPA is equivalent
to evaluating the joined CBPA at the end. This is stated in
Theorem 4.
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Theorem 4 Let 𝑚1 and 𝑚2 be CBPAs with frame of dis-
cernments 𝛺1 and 𝛺2 respectively. For a new frame of
discernment 𝛺, the evaluation distributes through the con-
junctive join,

𝑚1 |𝛺 ⊕ 𝑚2 |𝛺 = (𝑚1 ⊕ 𝑚2) |𝛺 .

While Theorem 4 is useful for understanding the relation
between complementary DST and other methods like GET
and TBM, it is practically of little use since it requires
knowledge of an exhaustive frame of discernment before-
hand.
Here, we additionally list the identities for the union of

complementary focal elements,

(𝑢, 𝑇𝑟𝑢𝑒) ∪ (𝑣, 𝑇𝑟𝑢𝑒) B (𝑢 ∪ 𝑣, 𝑇𝑟𝑢𝑒)
(𝑢, 𝑇𝑟𝑢𝑒) ∪ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B (𝑣 − 𝑢, 𝐹𝑎𝑙𝑠𝑒)
(𝑢, 𝐹𝑎𝑙𝑠𝑒) ∪ (𝑣, 𝑇𝑟𝑢𝑒) B (𝑢 − 𝑣, 𝐹𝑎𝑙𝑠𝑒)
(𝑢, 𝐹𝑎𝑙𝑠𝑒) ∪ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B (𝑣 ∩ 𝑢, 𝐹𝑎𝑙𝑠𝑒) ,

(9)

which constitute the core mechanism of the disjunctive
join [6].

2.3. Belief and Plausibility

In the framework of DST, the degree to which evidence
supports a proposition or set of propositions within a
frame of discernment is bounded by the values 𝑏𝑒𝑙𝑖𝑒 𝑓
and 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 where 𝑏𝑒𝑙𝑖𝑒 𝑓 ≤ 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. These
measures can also be generalized to complementary focal
elements for an open world frame of discernment.
To define belief, we first specify how to determinewhether

one complementary focal element is a subset of another.
Letting (𝑢, 𝑎) ∈ 2𝛺1 × 𝔹 and (𝑣, 𝑏) ∈ 2𝛺2 × 𝔹 we define
the logical subset operator for all pairwise combinations of
the Boolean variables,

(𝑢, 𝑇𝑟𝑢𝑒) ⊆ (𝑣, 𝑇𝑟𝑢𝑒) B 𝑢 ⊆ 𝑣

(𝑢, 𝑇𝑟𝑢𝑒) ⊆ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B (𝑢 ∩ 𝑣 = ∅)
(𝑢, 𝐹𝑎𝑙𝑠𝑒) ⊆ (𝑣, 𝑇𝑟𝑢𝑒) B 𝐹𝑎𝑙𝑠𝑒

(𝑢, 𝐹𝑎𝑙𝑠𝑒) ⊆ (𝑣, 𝐹𝑎𝑙𝑠𝑒) B 𝑣 ⊆ 𝑢 .

(10)

Figure 3 depicts the subset evaluation between the com-
plementary focal elements with themselves for frame of
discernment 𝛺 = {𝐴, 𝐵, 𝐶}. The belief function quantifies
the lowest possible degree to which the evidence supports a
complementary focal element by summing the masses of
all subsets of the complementary focal element that are not
empty.

Definition 5 The belief in complementary focal element 𝑦
from CBPA 𝑚 is defined as the following:

bel𝑚 (𝑦) =
∑︁

𝑥∈2𝛺×𝔹
𝑥⊆𝑦

𝑥≠( ∅,𝑇 𝑟𝑢𝑒)

𝑚(𝑥) . (11)

Figure 3: Subset property between complementary focal el-
ements for frame of discernment 𝛺 = {𝐴, 𝐵, 𝐶}.

We order three related belief computations in Theorem 6:

Theorem 6 For a CBPA 𝑚 with a frame of discernment
𝛺 and for 𝑢 ∈ 2𝛺 ,

bel𝑚 ((𝑢, 𝑇𝑟𝑢𝑒)) ≤ bel𝑚 |𝛺 (𝑢) ≤ bel𝑚 ((𝛺 − 𝑢, 𝐹𝑎𝑙𝑠𝑒)) .

Plausibility of a focal element is defined as the sum of all
masses of focal elements that are not disjoint to that focal
element, visualized in Figure 4. It follows that plausibility
is the degree to which evidence does not contradict the
proposition (or set of propositions) represented by the focal
element or in other words, the degree to which the focal
element proposition(s) are possible.

Definition 7 The plausibility of complementary focal ele-
ment 𝑦 from CBPA 𝑚 is defined as the following:

pl𝑚 (𝑦) =
∑︁

𝑥∈2𝛺×𝔹
𝑥∩𝑦≠( ∅,𝑇 𝑟𝑢𝑒)

𝑚(𝑥) (12)

There is a relation of three plausibility computations
described in Theorem 8.

Theorem 8 For a CBPA 𝑚 with a frame of discernment
𝛺 and for 𝑢 ∈ 2𝛺 ,

pl𝑚 ((𝑢, 𝑇𝑟𝑢𝑒)) = pl𝑚 |𝛺 (𝑢) ≤ pl𝑚 ((𝛺 − 𝑢, 𝐹𝑎𝑙𝑠𝑒)) .
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Figure 4: The disjoint property between complementary
focal elements for frame of discernment 𝛺 =

{𝐴, 𝐵, 𝐶}.

We note that the difference between the relation
bel𝑚 ((𝑢, 𝑇𝑟𝑢𝑒)) ≤ bel𝑚 |𝛺 (𝑢) in Theorem 6 and
pl𝑚 ((𝑢, 𝑇𝑟𝑢𝑒)) = pl𝑚 |𝛺 (𝑢) in Theorem 8 comes from
the differences in behavior of subsets and intersections of
complementary focal elements. Subsets of (𝑢, 𝑇𝑟𝑢𝑒) will
only consist of 𝑇𝑟𝑢𝑒 components, while both 𝑇𝑟𝑢𝑒 and
𝐹𝑎𝑙𝑠𝑒 components can have nonempty intersections with
(𝑢, 𝑇𝑟𝑢𝑒).
A relation between belief and plausibility computations

can be seen in Theorem 9 and is an adaptation of previous
relationships between belief and plausibility to CBPAs [4,
26, 28].

Theorem 9 Belief and plausibility are related through the
following equation:

𝑚((∅, 𝑇𝑟𝑢𝑒)) + bel((𝑢,¬𝑎) + pl((𝑢, 𝑎)) = 1 . (13)

3. Experiments
Here we demonstrate complementary DST on various prob-
lems. We illustrate Theorems 6, 8 and 9 on synthetic data.
Additionally, we highlight our capabilities on the iris species
dataset, and the land coverage identification problem from
Sentinel-2 satellite data.

3.1. Synthetic

To demonstrate complementary DST, we create two CBPAs,
𝑚1 with frame of discernment {𝐴, 𝐵}, and 𝑚2 with frame
of discernment {𝐵,𝐶}, seen in the Tables 2(a) and 2(b). We
apply the TBM conjunctive join to compute𝑚1⊕𝑚2 = 𝑚1,2,
and show the evaluation of 𝑚1,2 on 𝛺 = {𝐴, 𝐵, 𝐶} in
Tables 2(c) and 2(d).

Table 2: Nonzero values of CBPAs: 𝑚1, 𝑚2, 𝑚1,2, and the
evaluation of 𝑚1,2 on 𝛺 = {𝐴, 𝐵, 𝐶}.

(a) 𝑚1
Element Mass
(∅, 𝐹𝑎𝑙𝑠𝑒) 0.3

({𝐴}, 𝐹𝑎𝑙𝑠𝑒) 0.4
({𝐵}, 𝐹𝑎𝑙𝑠𝑒) 0.2
({𝐴, 𝐵}, 𝑇𝑟𝑢𝑒) 0.1

(b) 𝑚2
Element Mass

({𝐵}, 𝐹𝑎𝑙𝑠𝑒) 0.4
({𝐶}, 𝑇𝑟𝑢𝑒) 0.3

({𝐵,𝐶}, 𝑇𝑟𝑢𝑒) 0.2
({𝐵,𝐶}, 𝐹𝑎𝑙𝑠𝑒) 0.1

(c) 𝑚1,2
Element Mass
(∅, 𝑇𝑟𝑢𝑒) 0.03

({𝐴}, 𝑇𝑟𝑢𝑒) 0.05
({𝐵}, 𝑇𝑟𝑢𝑒) 0.02
({𝐵}, 𝐹𝑎𝑙𝑠𝑒) 0.20
({𝐶}, 𝑇𝑟𝑢𝑒) 0.31

({𝐴, 𝐵}, 𝐹𝑎𝑙𝑠𝑒) 0.16
({𝐵,𝐶}, 𝑇𝑟𝑢𝑒) 0.14
({𝐵,𝐶}, 𝐹𝑎𝑙𝑠𝑒) 0.05

({𝐴, 𝐵, 𝐶}, 𝐹𝑎𝑙𝑠𝑒) 0.04

(d) 𝑚1,2 |𝛺
Element Mass

∅ 0.07
{𝐴} 0.1
{𝐵} 0.02
{𝐶} 0.47

{𝐴,𝐶} 0.2
{𝐵,𝐶} 0.14

In this example, the mass in 𝑚1,2 ((∅, 𝑇𝑟𝑢𝑒)) comes
from the combination of the conflicting beliefs of
𝑚1 (({𝐴, 𝐵}, 𝑇𝑟𝑢𝑒) = 0.1 and 𝑚2 (({𝐶}, 𝑇𝑟𝑢𝑒) = 0.3.
From the tables it is also clear that unlike GET and TBM,
complementaryDST differentiates between amissing propo-
sition from the frame of discernment and fundamental con-
flict. Specifically, in the computation the classic conflict term
𝑚1,2 |𝛺 (∅) = 𝑚1,2 ((∅, 𝑇𝑟𝑢𝑒)) +𝑚1,2 (({𝐴, 𝐵, 𝐶}, 𝐹𝑎𝑙𝑠𝑒)),
we see that it is the sum of two masses. The mass,
𝑚1,2 ((∅, 𝑇𝑟𝑢𝑒)) represents the conflict of the CBPAs, and
𝑚1,2 (({𝐴, 𝐵, 𝐶}, 𝐹𝑎𝑙𝑠𝑒)) represents the conjecture that a
proposition is missing.
The belief and plausibility intervals of 𝑚1,2 and

𝑚1,2 |𝛺 where 𝛺 = {𝐴, 𝐵, 𝐶} are shown in Fig-
ure 5. Three intervals are shown for each focal el-
ement 𝑢 ∈ 2𝛺 : [bel𝑚 ((𝑢, 𝑇𝑟𝑢𝑒)), pl𝑚 ((𝑢, 𝑇𝑟𝑢𝑒))] in
red, [bel𝑚 |𝛺 (𝑢), pl𝑚 |𝛺 (𝑢)] in green, and [bel𝑚 ((𝛺 −
𝑢, 𝐹𝑎𝑙𝑠𝑒)), pl𝑚 ((𝛺 − 𝑢, 𝐹𝑎𝑙𝑠𝑒))] in blue. Our interpre-
tation of these intervals is that red represents the possible
probabilities of a specific focal element being true, green rep-
resents these probabilities assuming that the current frame
of discernment is complete, and blue represents the feasible
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Figure 5: An example of belief and plausibility for the
complementary approach to Dempster-Shafer
Theory.

probabilities that the complement of each focal element is
not true. Some insight can be gained from comparing the
red and blue intervals. For example, with 𝛺 = {𝐴, 𝐵, 𝐶} an
apparent inconsistency of high confidence in ({𝐶}, 𝐹𝑎𝑙𝑠𝑒)
and simultaneously low confidence is ({𝐴, 𝐵}, 𝑇𝑟𝑢𝑒) can
be reconciled with a missing proposition 𝐷. In Figure 5, we
can clearly see the relationship between beliefs and plausi-
bilities described in Theorems 6 and 8. Additionally, we can
see the relation between belief and plausibility described in
Theorem 9 with the value of 𝑚1,2 ((∅, 𝑇𝑟𝑢𝑒)).

3.2. Iris Species Classification

The iris dataset is a well known labeled dataset consisting
of 3 classes, each containing 50 samples [10]. Each sample
is a collection of 4 iris measurements: the sepal length,
sepal width, petal length, and petal width, and is associated
with one of the three species of iris: Setosa, Versicolor, or
Virginica. We abbreviate Setosa, Versicolor, and Virginica
as Se, Ve, and Vi, respectively.
To highlight the ability of CBPAs toworkwith incomplete

frames of discernment, we construct CBPAs fromOne-Class
Support Vector Machines (OneClassSVM) trained individ-
ually on each class from the iris dataset. No classifier was
trained on samples from more than one class. We use 60%,
40% train-test split to get 30 train and 20 test samples of
each class. On the training data, we fit a OneClassSVMwith
the parameters, a = 0.1, for each class of iris individually.
For each of the test samples, indexed by 𝑖, and for each
class, 𝑐, we predict the class membership as a Boolean

𝑝𝑖𝑐 =

{
1 if sample i predicted to belong to class 𝑐
0 if sample i predicted to not belong to class 𝑐 .

(a) 𝑚𝑆𝑒 (b) 𝑚𝑉 𝑒 (c) 𝑚𝑉 𝑖

Figure 6: Confusion matrices of CBPAs for each class

For each prediction we construct a CBPA with the values,

𝑚𝑖
𝑐 (({𝑐}, 𝑇𝑟𝑢𝑒)) = 𝑝𝑖𝑐 (14)

𝑚𝑖
𝑐 (({𝑐}, 𝐹𝑎𝑙𝑠𝑒)) = 1 − 𝑝𝑖𝑐 . (15)

We elected to assign mass to ({𝑐}, 𝐹𝑎𝑙𝑠𝑒) rather than
(∅, 𝐹𝑎𝑙𝑠𝑒) to represent the confidence that our training and
testing datasets come from the same distribution and the
training dataset should cover all cases of the class.1
Figure 6 depicts confusion matrices showing the agglom-

erated results over the test samples for each class. The
OneClassSVM trained on Setosa in Figure 6(a) was able to
perfectly place all test samples. The two classifiers indepen-
dently trained on Versicolor in Figure 6(b) and Virginica
in Figure 6(c) performed perfectly on Setosa but both mis-
categorized three test samples of Versicolor and one test
sample from Virginica.
In Figure 7we see the confusionmatrix results of different

conjunctive join combinations of theCBPAs seen in Figure 6.
While the results in Figures 7(a) and 7(b) are mostly straight-
forward, the combination 𝑚𝑉 𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟 ,𝑉 𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎 in Fig-
ure 7(c) makes an important distinction between ignorance
and conflict with Versicolor and Virginica OneClassSVMs.
With the 20 Versicolor test samples, 15 were correctly clas-
sified, 2 were put into ({𝑉𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟,𝑉𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}, 𝐹𝑎𝑙𝑠𝑒)
meaning neither classifier claimed those samples as their
species (ignorance), 1 sample was misidentified as Vir-
ginica, and 2 samples were assigned to the conflict element,
(∅, 𝑇𝑟𝑢𝑒), meaning that both classifiers claimed those sam-
ples as their species. Similarly for the Virginica samples,
18 were correctly placed, 1 neither classifier claimed (igno-
rance), and 1 both classifiers claimed (conflict).

1If one does not have confidence that the training and testing datasets
come from the same distributions, one could make the argument that a
negative result does not indicate that the sample is not from the training
class, and therefore the mass should be assigned to a truly vacuous
statement, ( ∅, 𝐹𝑎𝑙𝑠𝑒) .
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(a) 𝑚𝑆𝑒,𝑉 𝑒 (b) 𝑚𝑆𝑒,𝑉 𝑖 (c) 𝑚𝑉 𝑒,𝑉 𝑖 (d) 𝑚𝑆𝑒,𝑉 𝑒,𝑉 𝑖

Figure 7: Confusion matrices of conjunctive joins of CBPAs.

The addition of a new proposition, {𝑆𝑒𝑡𝑜𝑠𝑎}, to the
frame of discernment {𝑉𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟,𝑉𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}is demon-
strated in the transition between Figures 7(c) and 7(d).
The migration of the 20 Setosa samples from the comple-
mentary focal element ({𝑉𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟,𝑉𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}, 𝐹𝑎𝑙𝑠𝑒)
in Figure 7(c) to the complementary focal element
({𝑆𝑒𝑡𝑜𝑠𝑎}, 𝑇𝑟𝑢𝑒) in Figure 7(d) does not require any mod-
ification or recalculation of the previous CBPAs. Addi-
tionally, all samples still not claimed by any classifier
appear in the newly introduced complementary focal ele-
ment ({𝑆𝑒𝑡𝑜𝑠𝑎,𝑉𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟,𝑉𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}, 𝐹𝑎𝑙𝑠𝑒). Mass in
the complementary focal element for the known frame of
discernment can indicate the need for more sophisticated
classifiers or that the current frame of discernment is in-
complete. In either event, this is a quantified indication of
the known unknowns.

3.3. Sentinel-2 Land Cover Classification

Here, we illustrate our complementary DST on the task
of land cover classification of Sentinel-2 imagery. The
Sentinel-2 constellation from the Copernicus program is op-
erated by the European Space Agency [21]. Each Sentinel-2
satellite carries a multi-spectral instrument for acquiring
high spatial resolution optical imagery. The level 1C prod-
ucts contain Top Of Atmosphere (TOA) reflectances of 13
bands summarized in Table 3. In this experiment, we use a
scene from Anchorage, Alaska, seen in Figure 8, taken by
Sentinel-2A on Aug. 2, 2021 which has been downsampled
to a 180m resolution.
Remote sensing subject matter experts take advantage

of different reflectance properties of materials to develop
simple methods to accurately identify different land covers.
Some of themost successful methods rely on the normalized
difference,

ND(𝑋1, 𝑋2) =
𝑋1 − 𝑋2
𝑋1 + 𝑋2

. (16)

Figure 8: True color image of Anchorage, Alaska down-
sampled to 180m resolution taken by Sentinel-2A
on Aug. 2, 2021.
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(a) 𝑚𝑊 ,𝑉 (({𝑤}, 𝑇𝑟𝑢𝑒)) (b) 𝑚𝑊 ,𝑉 (({𝑣}, 𝑇𝑟𝑢𝑒)) (c) 𝑚𝑊 ,𝑉 (({𝑤, 𝑣}, 𝐹𝑎𝑙𝑠𝑒)) (d) 𝑚𝑆 (({𝑤, 𝑠}, 𝑇𝑟𝑢𝑒))

(e) 𝑚𝑊 ,𝑉 ,𝑆 (({𝑤}, 𝑇𝑟𝑢𝑒)) (f ) 𝑚𝑊 ,𝑉 ,𝑆 (({𝑣}, 𝑇𝑟𝑢𝑒)) (g) 𝑚𝑊 ,𝑉 ,𝑆 (({𝑠}, 𝑇𝑟𝑢𝑒)) (h) 𝑚𝑊 ,𝑉 ,𝑆 (({𝑤, 𝑣, 𝑠}, 𝐹𝑎𝑙𝑠𝑒))

Figure 9: Visualization of masses for specific focal elements from CBPAs constructed from Sentinel-2 imagery. Black
represents a mass of 0, white of 1. There was little mass in the conflict focal elements, (∅, 𝑇𝑟𝑢𝑒), so they are
omitted for space.

Table 3: Sentinel-2 level 1C band names, descriptions,
approximate wavelengths, and resolutions.

Band Description Wav. (nm) Res. (m)
B1 Coastal Aerosol 442 60
B2 Blue 492 10
B3 Green 559 10
B4 Red 665 10
B5 Veg. red edge 704 20
B6 Veg. red edge 740 20
B7 Veg. red edge 781 20
B8 NIR 833 10
B8A Narrow NIR 864 20
B9 Water vapour 944 60
B10 SWIR - Cirrus 1375 60
B11 SWIR 1612 20
B12 SWIR 2194 20

The normalized differences between different bands for
each pixel provides a value between -1 and 1 whose rel-
ative weight is an indicator of the presence of one or
multiple materials. The Normalized Difference Water In-

Table 4: The normalized difference method names, mate-
rial classes, bands, and thresholds used to compute
CBPAs.

Method Materials 𝑋1 𝑋2 𝑇𝑙 𝑇𝑢
NDWI {𝑤𝑎𝑡𝑒𝑟} B3 B8A 0.3 0.5
NDVI {𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛} B8A B4 0.2 0.5
NDSI {𝑤𝑎𝑡𝑒𝑟, 𝑠𝑛𝑜𝑤} B3 B11 -0.1 0.2

dex (NDWI) [17] and Normalized Difference Vegetation
Index (NDVI) [19] are used to indicate water and vegeta-
tion respectively. The Normalized Difference Snow Index
(NDSI) [24] can indicate snow, clouds, and water depending
on selected thresholds [1, 15]. We abbreviate NDWI, NDVI,
and NDSI as𝑊 , 𝑉 , and 𝑆, and water, vegetation, and snow,
as 𝑤, 𝑣, and 𝑠.

We apply the normalized difference methods to generate
CBPAs and use our complementary DST to do data fusion
between CBPAs. Using the values in Table 4, we create
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CBPAs by clipping the values,

𝑚𝑀𝑒𝑡ℎ𝑜𝑑 ((𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠, 𝑇𝑟𝑢𝑒)) = ND(𝑋1, 𝑋2) − 𝑇𝑙

𝑇𝑢 − 𝑇𝑙

𝑚𝑀𝑒𝑡ℎ𝑜𝑑 ((𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠, 𝐹𝑎𝑙𝑠𝑒)) = 1 − ND(𝑋1, 𝑋2) − 𝑇𝑙

𝑇𝑢 − 𝑇𝑙
,

(17)
to [0, 1] for each different normalized difference method.
Notice that the frames of discernment of NDVI do not
have any common elements with either NDWI or NDSI.
Additionally, the frame of discernment of NDWI is a subset
of NDSI’s. These differences in frames of discernment pose
no problem in joining these CBPAs together as they do not
need to share a common frame of discernment.
In Figures 9(a)-9(c) we see the complementary fo-

cal element values from 𝑚𝑊 ,𝑉 for ({𝑤𝑎𝑡𝑒𝑟}, 𝑇𝑟𝑢𝑒),
({𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛}, 𝑇𝑟𝑢𝑒), and ({𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛}, 𝐹𝑎𝑙𝑠𝑒)
respectively. The identification of water and vegetation
is relatively straightforward. The significant presence in
({𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛}, 𝐹𝑎𝑙𝑠𝑒) indicates that the frame of
discernment {𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛} is insufficient to describe
this scene. Comparison to the TCI suggests that the pixels
in ({𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛}, 𝐹𝑎𝑙𝑠𝑒) are correctly categorized
as neither 𝑤𝑎𝑡𝑒𝑟 nor 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, and that perhaps a propo-
sition {𝑠𝑛𝑜𝑤} is missing.
We systematically add the 𝑠𝑛𝑜𝑤 proposition with the

conjunctive joining of the 𝑚𝑆 CBPA shown in Figure 9(d)
to 𝑚𝑊 ,𝑉 . The resulting CBPA, 𝑚𝑊 ,𝑉 ,𝑆 , is displayed in
Figures 9(e)-9(h). We see insignificant modifications to the
𝑤𝑎𝑡𝑒𝑟 and 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛masses in Figures 9(e) and 9(f ). The
masses in Figure 9(c) have been distributed between snow in
Figure 9(g), and still unknown propositions in Figure 9(h).
The significant mass in Figure 9(h) suggests the frame

of discernment {𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑛𝑜𝑤} is still incom-
plete. Visual comparison with the TCI suggests that 𝑢𝑟𝑏𝑎𝑛,
𝑟𝑜𝑐𝑘𝑠, and𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑠may be suitable additions to the frame
of discernment. Using our complementary DST frame-
work, subject matter experts could devise CBPAs from new
sources of evidence that can further help to identify the
unclassified features without needing to update all previous
CBPAs with the new propositions.
Frequently more refined material classifications are

sought than that of {𝑤𝑎𝑡𝑒𝑟, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑛𝑜𝑤}. In prac-
tice, imperfect and sensitive thresholding systems are im-
plemented to attempt identification of individual materials.
With CBPAs, if various methods allows for discernment
between different groups of materials, then the CBPAs can
be joined together to provide a consistent picture. This
provides the advantage of being able to choose less sensi-
tive thresholds to discriminate groups of materials, rather
than individual materials. Additionally, the joined CBPAs
automatically distinguish between conflict and pixels that
are left unidentified.

4. Conclusion
In this work we propose a new approach for open-world
DST based on complements of sets that we call comple-
mentary DST. We provide the generalized definitions and
theorems necessary to characterize complementary DST.
Experimental results indicate that complementary DST can
identify when a frame of discernment is incomplete, join
together CBPAs that are not defined on the same frame of
discernment, and systematically added propositions to a
frame of discernment. Complementary DST can distinguish
between conflict in sources of information and ignorance of
a possible outcome. Conflict can be resolved by replacing
inconsistent information where ignorance can be resolved
by considering new propositions from an open world.
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