6 (-(*0--(,)))

A Nonstandard Approach To Stochastic Processes Under Probability Bounding

> Matthias C. M. Troffaes 14 July 2023 ISIPTA'23

Internal set theory

What is internal set theory?

new predicate 'standard' that applies to objects (sets, functions, ...)

- internal formulas: do not use 'standard'
- external formulas: do use 'standard' "0 is a standard natural number"
- 0 + 1 equals 1" is a standard natural number"
- three new axioms added to ZFC to govern use of this predicate [Nel87]
 - 1. idealisation
 - 2. standardisation
 - 3. transfer

Internal set theory

Intuition?

- ▶ for an object to be standard, intuitively, we mean [DD95, §1.1.1, p. 2]:
 - 'at any stage within the mathematical discourse, [...] uniquely defined [using an explicitly written internal formula]'
- the new axioms capture this intuition, e.g.
 - ▶ if an object is uniquely defined by an internal formula, then it is standard
 - ▶ if an internal statement holds for all standard objects, then it holds for all objects
 - there are only finitely many standard objects

more precisely, every set has a finite subset that contains all of its standard elements

Internal set theory

Why is it useful?

- has the notion of an infinitesimal (goes back to Newton, Leibniz, Cauchy, etc.; Weierstrass and others sadly failed to formalize these [BK12])
- many objects have an infinitely close standard object, called its shadow: allows us to move between standard functions with infinite domain and non-standard functions with finite domain

very useful to study stochastic processes in continuous time!

Difficulties

- for historical reasons, most mathematicians are unfamiliar with it
- inherent ambiguous boundary between standard and non-standard objects

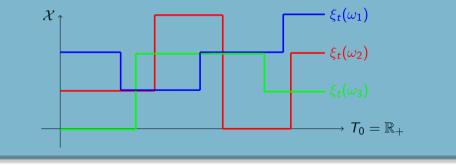
Stochastic processes

What is a stochastic process?

▶ standard finite state space X, standard index set $T_0 = \mathbb{N}$ or $T_0 = \mathbb{R}_+$

 \blacktriangleright standard possibility space Ω

▶ standard function ξ : $T_0 \times \Omega \rightarrow \mathcal{X}$



Stochastic processes

What is a stochastic process?

For any $T \subseteq T_0$, we define

- ▶ $\mathcal{A}(T)$: algebra of events generated by $\{\omega: \xi_t(\omega) = x\}$ for $t \in T$
- $\mathcal{L}(\mathcal{T})$: gambles formed by linear span of $\mathcal{A}(\mathcal{T})$
- $\blacktriangleright \ \mathcal{K}(\mathcal{T}) \coloneqq \mathcal{L}(\mathcal{T}) \times (\mathcal{A}(\mathcal{T}) \setminus \{\emptyset\})$

Definition

A process on T is a coherent lower prevision $\underline{\mathbb{E}}$ defined on $\mathcal{K}(T)$.

Stochastic processes

Key Assumption

Let T be a finite subset of T_0 containing all standard elements of T_0 .

Shadow of a process

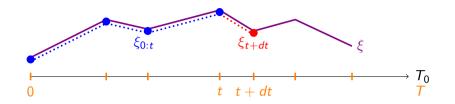
Theorem

For every process $\underline{\mathbb{E}}$ on T, there is a unique standard process $\underline{\mathbb{E}}_0$ on T_0 , called **shadow** of $\underline{\mathbb{E}}$, satisfying

 $\underline{\mathbb{E}}(f \mid A) \simeq \underline{\mathbb{E}}_0(f \mid A) \text{ for all standard } (f, A) \in \mathcal{K}(T_0)$ (1)

Vice versa, every standard process $\underline{\mathbb{E}}_0$ on T_0 is the shadow of some elementary process $\underline{\mathbb{E}}$ on T.

Imprecise Markov chains



Imprecise Markov chains: Notation

▶ if $t \in T \setminus \{\max T\}$ then t + dt denotes the successor of t in T, i.e.

$$dt \coloneqq \min\{t' \in T \colon t' > t\} - t \tag{2}$$

▶ for any function ϕ on T, $\phi_{0:t}$ denotes the restriction of ϕ to $[0, t] \cap T$

Imprecise Markov chains: Definition

Definition

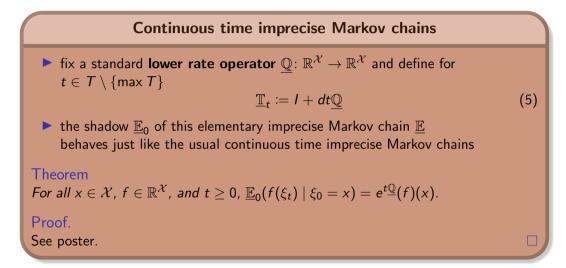
A precise elementary process \mathbb{E} on T is **compatible** with $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$ if for all paths $x: T \to \mathcal{X}$, all $t \in T \setminus \{\max T\}$, and all $f \in \mathbb{R}^{\mathcal{X}}$,

$$\mathbb{E}(f(\xi_0) \ge \underline{\mathbb{I}}(f) \tag{3}$$

$$\mathbb{E}(f(\xi_{t+dt}) \mid \xi_{0:t} = x_{0:t}) \ge \underline{\mathbb{T}}_t(f)(x_t)$$
(4)

If $\underline{\mathbb{E}}$ denotes the lower envelope of all these compatible precise elementary processes, then $\underline{\mathbb{E}}$ is called the **elementary imprecise Markov chain** induced by $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$. Its shadow is called the **imprecise Markov chain** induced by $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$.

Continuous time imprecise Markov chains



Conclusion

Conclusion

- simplified modelling of imprecise processes
- 'well behaved' assumption not needed [KBS17]
- so far only Williams coherence
- Nelson's more advanced model?
- time to embrace old school maths?

Come discuss at the poster!

References I

[BK12] Alexandre Borovik and Mikhail G. Katz. "Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus". In: *Foundations of Science* 17.3 (2012), pp. 245–276. DOI: 10.1007/s10699-011-9235-x.

[CHQ09] Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. "Imprecise Markov Chains and Their Limit Behavior". In: Probability in the Engineering and Informational Sciences 23.4 (Oct. 2009), pp. 597–635. DOI: 10.1017/S0269964809990039. arXiv: 0801.0980 [math.PR].

[DD95] Francine Diener and Marc Diener, eds. *Nonstandard Analysis in Practice*. Springer, 1995.

[DDL16] Gert De Cooman, Jasper De Bock, and Stavros Lopatatzidis. "Imprecise stochastic processes in discrete time: global models, imprecise Markov chains, and ergodic theorems". In: International Journal of Approximate Reasoning 76 (2016), pp. 18–46. DOI: 10.1016/j.ijar.2016.04.009.

References II

- [De 17] Jasper De Bock. "The Limit Behaviour of Imprecise Continuous-Time Markov Chains". In: *Journal of Nonlinear Science* 27 (2017), pp. 159–196.
- [KBS17] Thomas Krak, Jasper De Bock, and Arno Siebes. "Imprecise continuous-time Markov chains". In: International Journal of Approximate Reasoning 88 (Sept. 2017), pp. 452–528. DOI: 10.1016/j.ijar.2017.06.012. arXiv: 1611.05796 [math.PR].
- [Nel87] Edward Nelson. Radically Elementary Probability Theory. Annals of Mathematical Studies. New Jersey: Princeton University Press, 1987. URL: https://web.math.princeton.edu/~nelson/books/rept.pdf.
- [Šku09] Damjan Škulj. "Discrete time Markov chains with interval probabilities". In: International Journal of Approximate Reasoning 50.8 (2009), pp. 1314–1329. DOI: 10.1016/j.ijar.2009.06.007.

[Šku15] Damjan Škulj. "Efficient computation of the bounds of continuous time imprecise Markov chains". In: Applied Mathematics and Computation 250 (2015), pp. 165–180. DOI: 10.1016/j.amc.2014.10.092.