
A Nonstandard Approach
To Stochastic Processes

Under Probability Bounding

Matthias C. M. Troffaes
14 July 2023
ISIPTA’23

1 / 14



Internal set theory

What is internal set theory?

▶ new predicate ‘standard’ that applies to objects (sets, functions, . . . )
▶ internal formulas: do not use ‘standard’ “0 + 1 equals 1”
▶ external formulas: do use ‘standard’ “0 is a standard natural number”

▶ three new axioms added to ZFC to govern use of this predicate [Nel87]

1. idealisation
2. standardisation
3. transfer
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Internal set theory

Intuition?

▶ for an object to be standard, intuitively, we mean [DD95, §1.1.1, p. 2]:
‘at any stage within the mathematical discourse, [...]

uniquely defined [using an explicitly written internal formula]’
▶ the new axioms capture this intuition, e.g.

▶ if an object is uniquely defined by an internal formula, then it is standard
▶ if an internal statement holds for all standard objects, then it holds for all objects
▶ there are only finitely many standard objects

more precisely, every set has a finite subset that contains all of its standard elements

0 1 2 3 n − 1 n n + 1
. . .. . .. . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . .
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Internal set theory

Why is it useful?

▶ has the notion of an infinitesimal (goes back to Newton, Leibniz, Cauchy,
etc.; Weierstrass and others sadly failed to formalize these [BK12])

▶ many objects have an infinitely close standard object, called its shadow:
allows us to move between standard functions with infinite domain
and non-standard functions with finite domain

very useful to study stochastic processes in continuous time!

Difficulties

▶ for historical reasons, most mathematicians are unfamiliar with it

▶ inherent ambiguous boundary between standard and non-standard objects
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Stochastic processes

What is a stochastic process?

▶ standard finite state space X , standard index set T0 = N or T0 = R+

▶ standard possibility space Ω

▶ standard function ξ : T0 × Ω → X

T0 = R+

X

ξt(ω2)

ξt(ω1)

ξt(ω3)
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Stochastic processes

What is a stochastic process?

For any T ⊆ T0, we define

▶ A(T ): algebra of events generated by {ω : ξt(ω) = x} for t ∈ T

▶ L(T ): gambles formed by linear span of A(T )

▶ K(T ) := L(T )× (A(T ) \ {∅})

Definition
A process on T is a coherent lower prevision E defined on K(T ).
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Stochastic processes

Key Assumption

Let T be a finite subset of T0 containing all standard elements of T0.

Shadow of a process

Theorem
For every process E on T , there is a unique standard process E0 on T0,
called shadow of E, satisfying

E(f | A) ≃ E0(f | A) for all standard (f ,A) ∈ K(T0) (1)

Vice versa, every standard process E0 on T0 is the shadow of some elementary
process E on T .
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Imprecise Markov chains

T0
T0 t t + dt

ξξ0:t ξt+dt

Imprecise Markov chains: Notation

▶ if t ∈ T \ {maxT} then t + dt denotes the successor of t in T , i.e.

dt := min{t ′ ∈ T : t ′ > t} − t (2)

▶ for any function ϕ on T , ϕ0:t denotes the restriction of ϕ to [0, t] ∩ T
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Imprecise Markov chains

Imprecise Markov chains: Definition

Definition
A precise elementary process E on T is compatible with (I,T) if for all paths
x : T → X , all t ∈ T \ {maxT}, and all f ∈ RX ,

E(f (ξ0) ≥ I(f ) (3)

E(f (ξt+dt) | ξ0:t = x0:t) ≥ Tt(f )(xt) (4)

If E denotes the lower envelope of all these compatible precise elementary
processes, then E is called the elementary imprecise Markov chain induced by
(I,T). Its shadow is called the imprecise Markov chain induced by (I,T).

9 / 14



Continuous time imprecise Markov chains

Continuous time imprecise Markov chains

▶ fix a standard lower rate operator Q : RX → RX and define for
t ∈ T \ {maxT}

Tt := I + dtQ (5)

▶ the shadow E0 of this elementary imprecise Markov chain E
behaves just like the usual continuous time imprecise Markov chains

Theorem
For all x ∈ X , f ∈ RX , and t ≥ 0, E0(f (ξt) | ξ0 = x) = etQ(f )(x).

Proof.
See poster.
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Conclusion

Conclusion

▶ simplified modelling of imprecise processes

▶ ‘well behaved’ assumption not needed
[KBS17]

▶ so far only Williams coherence

▶ Nelson’s more advanced model?

▶ time to embrace old school maths?

Come discuss at the poster!
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