

Hannah Blocher, Georg Schollmeyer, Christoph Jansen, Malte Nalenz Ludwig-Maximilians-Universität München

Depth Functions for Partial Orders with a Descriptive Analysis of Machine Learning Algorithms

ISIPTA 2023

Blocher, Schollmeyer, Jansen, Nalenz

ISIPTA 2023

11.07.2023 1 / 1

(日) (四) (日) (日) (日)

Working Group

Working Group *Foundations of Statistics and their Applications* of Prof. Dr. Thomas Augustin.

(From left to right: Malte Nalenz, Dominik Kreiß (back), Hannah Blocher (front), Christoph Jansen, Thomas Augustin, Julian Rodemann, Gilbert Kiprotich, Georg Schollmeyer) Depth Functions for Partial Orders

with a Descriptive Analysis of Machine Learning Algorithms

Blocher, Schollmeyer, Jansen, Nalenz

イロト イヨト イヨト イヨト

Depth Function

Depth Functions measure **centrality** and **outlingless** of a data point with respect to a data cloud or an underlying distribution.

< □ > < □ > < □ > < □ > < □ >

Depth Functions measure **centrality** and **outlingless** of a data point with respect to a data cloud or an underlying distribution.

Figure: Simplicial Depth
(see https://en.wikipedia.org/wiki/Simplicial_depth,
visited: 20.10.21)

イロト イヨト イヨト イヨ

Depth Functions measure **centrality** and **outlingless** of a data point with respect to a data cloud or an underlying distribution.

Idea: Adaptation of the simplicial depth to the set of partial orders

Approach: The representation of the simplicial depth via the convex closure system

Result: *union-free generic (ufg) depth function*

イロト イヨト イヨト

Depth Functions for Partial Orders

with a Descriptive Analysis of Machine Learning Algorithms

Blocher, Schollmeyer, Jansen, Nalenz

11.07.2023 5 / 1

イロト イヨト イヨト イヨト

Comparison of Machine Learning Algorithms

- Data Sets: 80 classification problems from OpenML.
- ML Algorithms: Random Forests (RF), Decision Tree (CART), Logistic regression (LR), L1-penalized logistic regression (Lasso) and k-nearest neighbours(KNN).
- Performance Measures: area under the curve, F-score, predictive accuracy and Brier score.
- \Rightarrow We obtain 80 posets

(日) (四) (日) (日) (日)

Comparison of Machine Learning Algorithms

Figure: Example of two posets obtained by comparing five ml algorithms based on four performance measures. Each poset describes the performance based on one data set.

イロト イロト イヨト イヨト

Minimal and Maximal Depth Value

Figure: Observed poset with maximal (left) and minimal (right) ufg depth.

æ

イロン イロン イヨン イヨン

Poster and Paper

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

- Blocher, Schollmeyer, Jansen, Nalenz (2023): Depth Functions for Partial Orders with a Descriptive Analysis of Machine Learning Algorithms. *Forthcoming in: ISIPTA '23.*
- Blocher, Schollmeyer, Jansen (2022): Statistical models for partial orders based on data depth and formal concept analysis. In: Ciucci, D.; Couso, I.; Medina, J.; Slezak, D.; Petturiti, D.; Bouchon-Meunier, B.; Yager, R.R. (eds): IPMU *Communications in Computer and Information Science*, vol 1602, Springer.

(日) (四) (日) (日) (日)