The Set Structure of Precision

Rabanus Derr, Robert C. Williamson

The "Foundations of Machine Learning Systems" Group

http://fm.ls

Led by Robert C. Williamson

The "Foundations of Machine Learning Systems" Group

http://fm.ls

Led by Robert C. Williamson

Why does ISIPTA take place?

Why does ISIPTA take place?

Imprecise Probability

Why does ISIPTA take place?

Imprecise Probability

On which events are imprecise probabilities precise?

1,2,3,4 2,3,4 1,2,3 1,2,4 1,3,4 1,2 3,4 1,4 2,4 1,3 2,3 2 3 4

Ø

On which events are imprecise probabilities precise?

A. Normalization Imprecise Probability B. Conjugacy C. Subadditivity D. Superadditivity

=>(Pre-)Dynkin-Systems

$$\mathcal{D} \subseteq 2^{\{1,2,3,4\}}$$

$$\mathcal{D} \subseteq 2^{\{1,2,3,4\}} \quad \emptyset$$

 $I. \emptyset \in \mathcal{D}$

$$\mathcal{D} \subseteq 2^{\{1,2,3,4\}}$$

- $I. \emptyset \in \mathcal{D}$
- $2. A \in \mathcal{D}$

$$\mathcal{D} \subseteq 2^{\{1,2,3,4\}}$$

1.
$$\emptyset \in \mathcal{D}$$

2. $A \in \mathcal{D} \implies A^c \in \mathcal{D}$

$$\mathcal{D} \subseteq 2^{\{1,2,3,4\}}$$

$$I. \emptyset \in \mathcal{D}$$

$$2. A \in \mathcal{D} \implies A^c \in \mathcal{D}$$

3.
$$A, B \in \mathcal{D}, A \cap B = \emptyset \implies A \cup B \in \mathcal{D}$$

1.
$$\emptyset \in \mathcal{D}$$

2. $A \in \mathcal{D} \implies A^c \in \mathcal{D}$
3. $A, B \in \mathcal{D}, A \cap B = \emptyset \implies A \cup B \in \mathcal{D}$

How we actually started...

The same story told from a different start

Unmeasurable Penguin Colonies

Unmeasurable Penguin Colonies

Unmeasurable Penguin Colonies

Discrete Chebyshev Classifiers

Elad Eban* Elad Mezuman[†] Amir Globerson* ELADE@CS.HUJI.AC.IL ELAD.MEZUMAN@MAIL.HUJI.AC.IL GAMIR@CS.HUJI.AC.IL

†Edmond and Lily Safra Center for Brain Sciences. The Hebrew University of Jerusalem

*The Selim and Rachel Benin School of Computer Science and Engineering. The Hebrew University of Jerusalem

Discrete Chebyshev Classifiers

Elad Eban* Elad Mezuman[†] Amir Globerson* ELADE@CS.HUJI.AC.IL ELAD.MEZUMAN@MAIL.HUJI.AC.IL GAMIR@CS.HUJI.AC.IL

†Edmond and Lily Safra Center for Brain Sciences. The Hebrew University of Jerusalem

*The Selim and Rachel Benin School of Computer Science and Engineering. The Hebrew University of Jerusalem

Coherent risk measures induced by partially specified probabilities

Ehud Lehrer*

December 6, 2007

A preliminary draft

Discrete Chebyshev Classifiers

Elad Eban*
Elad Mezuman†
Amir Glo

ELADE@CS.HUJI.AC.IL ELAD.MEZUMAN@MAIL.HUJI.AC.IL

†Edmond *The Seli

Econometrica, Vol. 69, No. 2 (March, 2001), 265-306

f Jerusalem

SUBJECTIVE PROBABILITIES ON SUBJECTIVELY UNAMBIGUOUS EVENTS

By Larry G. Epstein and Jiankang Zhang¹

This paper suggests a behavioral definition of (subjective) ambiguity in an abstract setting where objects of choice are Savage-style acts. Then axioms are described that deliver probabilistic sophistication of preference on the set of unambiguous acts. In particular, both the domain and the values of the decision-maker's probability measure are derived from preference. It is argued that the noted result also provides a decision-theoretic foundation for the Knightian distinction between risk and ambiguity.

KEYWORDS: Ambiguity, Knightian uncertainty, subjective probability, probabilistic sophistication. Coherent risk measures induced by partially specified probabilities

Ehud Lehrer*

December 6, 2007

A preliminary draft

Discrete Chebyshev Classifiers

Elad Eban* Elad Mezuman¹ Amir Glo

ELADE@CS ELAD.MEZUMAN@MAII

†Edmond

Econometrica, Vol. 69, No. 2 (March, 2001), 265-306

*The Seli

SUBJECTIVE PROBABILITIES ON SUBJECTIVELY **UNAMBIGUOUS EVENTS**

By Larry G. Epstein and Jiankang Zhang¹

This paper suggests a behavioral definition of (subjective) ambiguity in an abstract setting where objects of choice are Savage-style acts. Then axioms are described that deliver probabilistic sophistication of preference on the set of unambiguous acts. In particular, both the domain and the values of the decision-maker's probability measure are derived from preference. It is argued that the noted result also provides a decisiontheoretic foundation for the Knightian distinction between risk and ambiguity.

KEYWORDS: Ambiguity, Knightian uncertainty, subjective probabilistic sophistication.

QUANTUM PROBABILITY SPACES

STANLEY P. GUDDER

1. Introduction. In [5] P. Suppes introduced the notion of a quantum probability space. He noted that such spaces may be used to describe the position and momentum of a quantum mechanical particle but cannot be used for more general systems. This author has considered quantum probability spaces not only because they are an interesting example of a nonclassical logic but because quantum mechanical phenomena are seen to develop in a quite transparent fashion in this case.

bV

partially specified probabilities

Ehud Lehrer*

December 6, 2007

A preliminary draft

Discrete Chebyshev Classifiers

Elad Eban* Elad Mezuman[†] Amir Glo

†Edmond *The Seli

ELADE@CS ELAD.MEZUMAN@MAII

Econometrica, Vol. 69, No. 2 (March, 2001), 265–306

SUBJECTIVE PROBABILITIES ON SUBJECTIVELY **UNAMBIGUOUS EVENTS**

By Larry G. Epstein and Jiankang Zhang¹

This paper suggests a behavioral definition of (subjective) ambiguity in a setting where objects of choice are Savage-style acts. Then axioms are desc deliver probabilistic sophistication of preference on the set of unambiguou particular, both the domain and the values of the decision-maker's probabilit are derived from preference. It is argued that the noted result also provides a theoretic foundation for the Knightian distinction between risk and ambiguity.

KEYWORDS: Ambiguity, Knightian uncertainty, subjective probability, proba phistication.

OUANTUM PROBABILITY SPACES

STANLEY P. GUDDER

1. Introduction. In [5] P. Suppes introduced the notion of a quantum probability space. He noted that such spaces may be used to describe the position and momentum of a quantum mechanical particle but cannot be used for more general systems. This author has considered quantum probability spaces not only because they are an interesting example of a nonclassical logic but because quantum mechanical phenomena are seen to develop in a quite transparent fashion in this case.

bV

partially specified probabilities

Ehud Lehrer*

G. SCHURZ

H. LEITGEB

Finitistic and Frequentistic

Approximation of

Probability Measures with or

without σ -Additivity

Better be Extendable

 $P \longrightarrow [0,1]$

Better be Extendable

Better be Extendable

Extendability = Coherence

Imprecise Probability on Set Algebra

Probability on Pre-Dynkin-System

Imprecise Probability on Set Algebra

Probability on Pre-Dynkin-System

Imprecise Probability on Set Algebra

Probability on Pre-Dynkin-System

See our Poster

