Finite sample valid probabilistic inference on quantile regression

ISIPTA 2023

Leonardo Cella: www.leocella.com

.

.

Introduction

Setup: Data $Z^n = (Z_1, ..., Z_n)$, $Z_i = (X_i, Y_i)$, are iid with distribution P.

distribution free

Quantile Regression:

- Let $Q_x(\tau)$ denote the τ -th quantile of Y given X=x
- $Q_x(\tau) = x^\top \theta$

Goal: Make inferences on θ valid

Traditional methods

• Inferences through <u>confidence regions</u>

• Notion of validity is familiar \implies coverage guarantees:

$$\sup_{P} P^{n} \{ C_{\alpha}(Z^{n}) \not\supseteq \theta(P) \} \le \alpha, \quad \alpha \in [0, 1].$$

• Traditional methods usually achieve this asymptotically

Can we do more?

Probabilistic inference

- Assign <u>degrees of belief</u> to general assertions about θ
- Validity: Control the assignment of high degrees of belief to false assertions

$$\sup_{P:\theta(P)\notin A} P^n \{ \Pi_{Z^n}(A) > 1 - \alpha \} \le \alpha, \quad \alpha \in [0, 1].$$

• Bayes comes to mind, but *False confidence theorem* says we need imprecision!

Satellite conjunction analysis and the false confidence theorem

Michael Scott Balch 🖂, Ryan Martin and Scott Ferson

Published: 17 July 2019 https://doi.org/10.1098/rspa.2018.0565

"<u>Degrees of belief that are</u> (additive) probabilities are at risk of being invalid"

Inferential Models

Imprecise probabilistic approach to statistical inference that has <u>validity</u> as its main pilar

Overview

Setup: Data $Z^n = (Z_1, ..., Z_n)$ is iid with distribution $P\omega$

Two-step IM construction

Inferential

soning with

Models

Ryan Martin Chuanhai Liu

1. Choose an appropriate $h : (\mathbb{Z}^n \times \Omega) \to \mathbb{R}$ that determines a partial ordering of candidate values for ω given z^n , e.g., likelihood ratio:

$$h(z^n,\omega)=L_{z^n}(\omega)/L_{z^n}(\hat{\omega}_{z^n})$$

2. Compute the possibility contour

$$\pi_{z^n}(\omega) = P_{\omega}^n \{ h(Z^n, \omega) \le h(z^n, \omega) \}$$

Degrees of belief

Confidence Regions

Back to quantile regression...

- Data $Z^n = (Z_1, \ldots, Z_n)$ are iid with distribution P
- $Z_i = (X_i, Y_i)$
- $Q_x(\tau) = x^T \theta \rightarrow \tau$ -th quantile of Y given X=x
- $\theta = \theta(P)$: Inferential target

IM construction

1- Choose an appropriate h that orders candidate values for θ given data

2 - Compute the contour $\pi_{z^n}(\theta) = P^n\{h(Z^n, \theta) \le h(z^n, \theta)\}$

Theorem:

This construction yields valid degrees of belief for assertions about θ , as well as valid confidence regions for θ .

Possible solution

h in terms of relative risk

 π approximated by the bootstrap

Due to the bootstrap, validity is just achieved asymptotically!

Choose an h whose distribution is known and independent of unknown quantities

 $\pi_{z^n}(\theta) = P^n\{h(Z^n, \theta) \le h(z^n, \theta)\}$ can be computed

But how to obtain such h?

- 1) Find a function γ of data and θ that is a pivot
- 2) Set h as the γ 's probability mass

. . .

. . . .

$$\gamma = \sum_{i=1}^{n} I_{(0,\infty)}(Y_i - x_i^{\mathsf{T}}\theta) \qquad \gamma \sim \operatorname{Bin}(n, 1-\tau) \qquad h = \binom{n}{\gamma}(1-\tau)^{\gamma}\tau^{n-\gamma}$$

But not efficient...

Continuous X

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

 •
 •
 •
 •

If X is continuous, **there is no replication** of Y for any given X = x

But we do have replications of Y in neighborhoods of X!

- Form k neighborhoods of X
- Consider each one of the k independent binomials separately
- h: product of their probability masses

Example: n=30, т=0.3, k=2

• • • •

-
- • •
-
- • •

This was fast, but....

- More details
- More examples
- Comparisons with other methods
- Open questions

Finite sample valid probabilistic inference on quantile regression

Leonardo Cella

Department of Statistical Sciences, Wake Forest University, USA

CELLAL@WFU.EDU

- • •
-