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Introduction

Setup: Data 72" = (Z,...,2Z,) Zi=(X.Y;),areiid with distribution P.

Quantile Regression:

e Let O«(7) denote the T-th quantile of Y given X=x

o O,(1)=x"60

distribution free

e Goal: Make inferences on 8
valid



Traditional methods

e |Inferencesthrough confidenceregions =

e Notion of validity is familiar = coverage guarantees:

sup P{C.(Z") #0(P)} <a, a€|0,1].
[)

e Traditional methods usually achieve this asymptotically

Can we do more?



Probabilistic inference

e Assign degrees of belief to general assertions about 6

e Validity: Control the assignment of high degrees of belief to false assertions

sup 1’“{112'.(44) >1-— a} <a, «aecl01].
POiPigA

e Bayes comesto mind, but False confidence theorem says we need imprecision!

Satellite conjunction analysis and the false “Degrees of belief that are
confidence theorem (additive) probabilities are at risk
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Inferential Inferential

Inferential Models

Overview

Setup: Data Z" = (Z1,...,Z,) isiid with distribution Pw

WT'wo-step IM construction

1. Choose an appropriate h : (Z™ x ) — R that determines a partial
ordering of candidate values for w given 2", e.g. likelihood ratio:

h(zn, CL)) — LG(UJ)/LG((:)zn)
2. Compute the possibility contour
n(w) = PJ{h(Z",w) < h(z",w)}

Degrees of Confidence
belief Regions



Back to quantile regression...

e Data Z"=(24,...,Z,) are iid with distribution P
° Z;=(X,Y))

@ Q.(7) =x"6 — 7-th quantile of Y given X=x

@ 0 =0(P): Inferential target

IM construction

1- Choose an appropriate h that orders candidate values for 8 given data
2 - Compute the contour  m,(0) = P"{h(Z",0) < h(z",0)}
Theorem:

This construction yields valid degrees of belief for assertions about 6, as well
as valid confidence regions for 0.



e o o o o o

Problems....

1- Choose h 2 - Compute the contour

Mo model m0(8) = PP{h(Z",0) < h(z",0)}

P is not known

No likelihood ratio

Possible solution

- f-_f,“ International Journal of Approximate Reasoning
£ 80 Valume 151, December 2022, Pages 205-224

~ Direct and approximately valid probabilistic
inference on a class of statistical functionals

h in terms of relative risk m approximated by the bootstrap

Due to the bootstrap, validity is just achieved asymptotically!
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Basic idea

Choose an h whose distribution is known and
independent of unknown quantities

m(0) = P"{h(Z",0) < h(z",0)} canbe computed

But how to obtain such h?

1) Find afunctiony of data and 0 that is a pivot

2) Set has the y’s probability mass



Intuitively...

Y= Zl(ooo)(Y, xTG) |:> Y ~Bin(n,1 —1) |:> h = ( ) 1-1)’"

But not efficient...




:::: New consideration: Discrete case first

Example: n=30, 1=0.5

8
Consider the independent .
binomials at each level of X ” g
= separately! . . i
— ) :
8
348
8
k n:
h= ( ')(1-7)”7""—%‘, ° |
i=1 \Vi ;
where
n; -
Yi = Zl(()’m) (YJ —xi()), = l ..... k "
j=1 ;
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Continuous X

If X'is continuous, there is no replication of Y for any given X = x

But we do have replications of Y in neighborhoods of X!
e Formkneighborhoods of X
e (onsider each one of the kindependent binomials separately
e h:product of their probability masses

Example: n=30, 1=0.3, k=2
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This was fast, but....

More details

More examples

Comparisons with other methods
Open questions
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