Finite sample valid probabilistic inference on quantile regression

ISIPTA 2023

Leonardo Cella: www.leocella.com

Introduction

Setup: Data $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right) \quad Z_{i}=\left(X_{i}, Y_{i}\right)$, are iid with distribution P.

Quantile Regression:

- Let $Q_{x}(\tau)$ denote the $\boldsymbol{\tau}$-th quantile of Y given $\mathrm{X}=\mathrm{x}$
- $Q_{x}(\tau)=x^{\top} \theta$
distribution free
- Goal: Make inferences on θ

```
            valid
```


Traditional methods

- Inferences through confidence regions \qquad

- Notion of validity is familiar \square coverage guarantees:

$$
\sup _{P} P^{n}\left\{C_{\alpha}\left(Z^{n}\right) \not \supset \theta(P)\right\} \leq \alpha, \quad \alpha \in[0,1] .
$$

- Traditional methods usually achieve this asymptotically

Can we do more?

Probabilistic inference

- Assign degrees of belief to general assertions about θ
- Validity: Control the assignment of high degrees of belief to false assertions

$$
\sup _{P: \theta(P) \notin A} P^{n}\left\{\Pi_{Z^{*}}(A)>1-\alpha\right\} \leq \alpha, \quad \alpha \in[0,1] .
$$

- Bayes comes to mind, but False confidence theorem says we need imprecision!

Satellite conjunction analysis and the false confidence theorem

Michael Scott Balch \square, Ryan Martin and Scott Ferson
Published: 17 July 2019 https://doi.org/10.1098/rspa.2018.0565
"Degrees of belief that are (additive) probabilities are at risk of being invalid"

Inferential Models

Overview

Setup: Data $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$ is iid with distribution $\mathrm{P} \omega$

Two-step IM construction

1. Choose an appropriate $h:\left(\mathbb{Z}^{n} \times \Omega\right) \rightarrow \mathbb{R}$ that determines a partial ordering of candidate values for ω given z^{n}, e.g.,likelihood ratio:

$$
h\left(z^{n}, \omega\right)=L_{z^{n}}(\omega) / L_{z^{n}}\left(\hat{\omega}_{z^{n}}\right)
$$

2. Compute the possibility contour

Back to quantile regression...

- Data $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$ are iid with distribution P
- $Z_{i}=\left(X_{i}, Y_{i}\right)$
- $Q_{x}(\tau)=x^{T} \theta \rightarrow \tau$-th quantile of Y given $X=x$
- $\theta=\theta(P)$: Inferential target

IM construction

1- Choose an appropriate h that orders candidate values for θ given data
2-Compute the contour $\quad \pi_{z^{n}}(\theta)=P^{n}\left\{h\left(Z^{n}, \theta\right) \leq h\left(z^{n}, \theta\right)\right\}$

Theorem:

This construction yields valid degrees of belief for assertions about θ, as well as valid confidence regions for θ.

Problems....

1-Choose h

No model

P is not known

Possible solution

Due to the bootstrap, validity is just achieved asymptotically!

Basic idea

Choose an h whose distribution is known and independent of unknown quantities

$$
\pi_{z^{n}}(\theta)=P^{n}\left\{h\left(Z^{n}, \theta\right) \leq h\left(z^{n}, \theta\right)\right\} \text { can be computed }
$$

But how to obtain such h?

1) Find a function y of data and θ that is a pivot
2) Set h as the γ 's probability mass

Intuitively...

$$
\gamma=\sum_{i=1}^{n} I_{(0, \infty)}\left(Y_{i}-x_{i}^{\top} \theta\right) \longleftrightarrow \gamma \sim \operatorname{Bin}(n, 1-\tau) \longleftrightarrow h=\binom{n}{\gamma}(1-\tau)^{\gamma} \tau^{n-\gamma} .
$$

But not efficient...

:::: New consideration: Discrete case first

Consider the independent binomials at each level of X separately!

$$
h=\prod_{i=1}^{k}\binom{n_{i}}{\gamma_{i}}(1-\tau)^{\gamma_{i}} \tau^{n_{i}-\gamma_{i}}
$$

where

$$
\gamma_{i}=\sum_{j=1}^{n_{i}} I_{(0, \infty)}\left(Y_{j}-x_{i} \theta\right), \quad i=1, \ldots, k
$$

Example: $\mathrm{n}=30, \mathrm{r}=0.5$

Continuous X

If X is continuous, there is no replication of Y for any given $X=x$

But we do have replications of Y in neighborhoods of X !

- Form kneighborhoods of X
- Consider each one of the k independent binomials separately
- h: product of their probability masses

Example: $\mathrm{n}=30, \mathrm{r}=0.3, \mathrm{k}=2$

This was fast, but....

- More details
- More examples
- Comparisons with other methods
- Open questions

Finite sample valid probabilistic inference on quantile regression

Leonardo Cella

Department of Statistical Sciences, Wake Forest University, USA

Finite sample valid probabilistic inference on quantile regression

