

Open World Dempster-Shafer using Complementary Sets

Erik Skau, Cassandra Armstrong, Duc P. Truong, David Gerts, Kari Sentz International Symposium on Imprecise Probabilities: Theories and Applications July 13, 2023

LA-UR-23-27186

UNCLASSIFIED

Overview

Dempster-Shafer Theory (DST) is a mathematical framework for reasoning with uncertainty.

DST

- Assumes a closed-world
- Conflict is conflated with unknown propositions

Complementary DST (CDST)

- Uses complements of sets to achieve an open-world
- Distinguishes between conflict and the unknown
- Apply to land cover classification problem

DST: The Closed World

- A *Frame of Discernment*, Ω , is a collection of propositions or hypothesis.
- Focal Elements are members of the powerset of the frame of discernment

$$u\in 2^{\Omega}$$
 .

- The closed world.

Example

 $\begin{array}{l} \mbox{Frame of Discernment: } \Omega = \{A, B, C\} \\ \mbox{Focal Elements: } 2^{\Omega} = \fbox{0} \mid \{A\} \mid \{B\} \mid \{C\} \mid \{A, B\} \mid \{A, C\} \mid \{B, C\} \mid \{A, B, C\} \\ \end{array}$

CDST: The Open World

• Complementary Focal Elements: members of the Cartesian product between the power set of a frame of discernment and the Boolean space,

$$(\textit{u},\textit{a})\in \mathsf{2}^{\Omega} imes \mathbb{B}$$
 .

- -(u, T) represents the hypothesis of u
- (u, F) represents the hypothesis of everything other than u, including all propositions not in Ω

Example

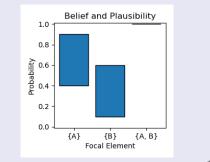
Frame of Discernment : $\Omega = \{A, B, C\}$ Complementary Focal Elements : $2^{\Omega} \times \mathbb{B} =$

(Ø, T)	$(\{A\}, T)$	({ <i>B</i> }, <i>T</i>)	$(\{C\}, T)$	$(\{A, B\}, T)$	$(\{A, C\}, T)$	$(\{B, C\}, T)$	$(\{A, B, C\}, T)$
$(\{A, B, C\}, F)$	$(\{B, C\}, F)$	$(\{A, C\}, F)$	$(\{A, B\}, F)$	$(\{C\}, F)$	$(\{B\}, F)$	$(\{A\},F)$	(Ø, F)

DST: Components

- Basic Probability Assignments (BPA): real nonnegative function on focal elements that sums to one
 - In DST m(∅) = 0, but not in Transferable Belief Models or Generalized Evidence Theory.
- Belief: lower probability bound of BPA
 - Belief_m(x) = $\sum_{y \subseteq x} m(y)$
- Plausibility: upper probability bound of BPA
 - Plausibility_m(x) = $\sum_{y \cap x \neq \emptyset} m(y)$
- Rules Of Combination: Mechanisms to fuse together BPAs

Example $\Omega = \{A, B\}$ $m = \{\{A\} : 0.4, \{B\} : 0.1, \{A, B\} : 0.5\}$



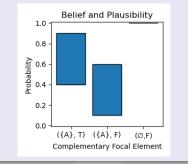
CDST: Components

- Complementary Basic Probability Assignments (CBPA): real nonnegative function on complementary focal elements that sums to one
- Belief: lower probability bound of CBPA
 - Belief_m(x) = $\sum_{y\subseteq x} m(y)$
- Plausibility: upper probability bound of CBPA
 - Plausibility_m(x) = $\sum_{y \cap x \neq \emptyset} m(y)$
- Rules Of Combination: Mechanisms to fuse together CBPAs

Example

$$\Omega = \{A\}$$

$$m = \{(\{A\}, T) : 0.4, (\{A\}, F) : 0.1, (\emptyset, F) : 0.5\}$$



DST: Zadeh's Criticism

Example

Ask your subject matter experts: "How much do you believe it is *meningitis*, *concussion*, and *tumor*?"

- SME1: "It's probably meningitis, with a slight chance it's concussion."
 - $m_1 = \{\{meningitis\} : 0.99, \{meningitis, concussion\} : 0.01\}$
- SME2: "It's probably tumor, with a slight chance it's concussion."
 - $m_2 = \{\{tumor\}: 0.99, \{concussion, tumor\}: 0.01\}$

 $m_{1,2} = \{ \emptyset : 0.9999, \{ concussion \} : 0.0001 \}$

Fundamental conflict between SMEs, $m_{1,2}(\emptyset) = 0.9999$ Believing $m(\{concussion\}) = 0.0001$ unlikely, but only choice^a

^aExample adapted from [L. A. Zadeh. On the validity of Dempster's rule of combination of

evidence. University of California, Berkeley, 1979.]

CDST: Open World Resolution to Zadeh's Criticism

Example

Ask your subject matter experts: "How much do you believe it is *not meningitis*, *concussion*, and *tumor*?"

- SME1: "It's definitely not tumor, and probably not concussion."
 - $m_1 = \{(\{concussion, tumor\}, F) : 0.99, (\{tumor\}, F) : 0.01\}$
- SME2: "It's definitely not meningitis, and probably not concussion."
 - $m_2 = \{(\{meningitis, concussion\}, F) : 0.99, (\{meningitis\}, F) : 0.01\}$

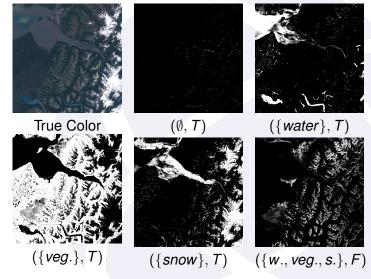
 $m_{1,2} = \{(\{meningitis, concussion, tumor\}, F) : 0.9999, (\{meningitis, tumor\}, F) : 0.0001\}$

No conflict between SMEs, $m((\emptyset, T)) = 0$ Most likely an unconsidered proposition, ({*meningitis*, *concussion*, *tumor*}, F) : 0.9999

UNCLASSIFIED

CDST: Land Cover Classification Application

- Applied to Sentinel-2 Satellite imagery of Anchorage Alaska
- Use normalized difference metrics to identify materials and construct CBPAs
- CBPAs created in ignorance of other land cover classes
- Separates conflict from unknown propositions



UNCLASSIFIED

Conclusion

Complementary DST

- Open-world
- Separates conflicting evidence from unconsidered propositions
- Allows for the explicit assignment of mass to ignorance

Backup Slides

UNCLASSIFIED

Application: Land Cover Classification

SMEs use normalized differences

NormalizedDifference($Band_i, Band_j$) = $\frac{Band_i - Band_j}{Band_i + Band_i}$

of multispectral satellite bands to identify specific land cover classes.

- Large values: presence of material
- Small values: absence of material

Normalized difference indices:

- Water Index: assigns ({water}, T) and ({water}, F)
- Vegetation Index: assigns ({vegetation}, T) and ({vegetation}, F)
- Snow Index: assigns ({water, snow}, T) and ({water, snow}, F)

