

Prime implicants as a versatile tool to explain robust classification

Hénoïk Willot, Sébastien Destercke & Khaled Belahcene

13th International Symposium on Imprecise Probabilities: Theories and Applications

ISIPTA23 - July 11-14th 2023

Our team

2

ISIPTA23 – July 11-14th 2023

Our team

Our team

ISIPTA23 – July 11-14th 2023

Prime implicants as a versatile tool to explain robust classification

Hénoïk Willot, Sébastien Destercke & Khaled Belahcene

13th International Symposium on Imprecise Probabilities: Theories and Applications

Introduction Prime implicant as a explanation ... Classification

Introduction Classification problem

Recommend : class $\mathbf{y} \in \mathscr{Y} = \{y_1, \dots, y_m\}$ Features : $\mathscr{X}^N = \prod_{i=1}^n \mathscr{X}_i$ Discrete domains : $\mathscr{X}_i = \{x_i^1, \dots, x_i^{k_i}\}$ Observation : $\mathbf{x} \in \mathscr{X}^N$

Introduction Prime implicant as a explanation ... Classification

Introduction Classification problem

Recommend : class $\mathbf{y} \in \mathscr{Y} = \{y_1, \dots, y_m\}$ Features : $\mathscr{X}^N = \prod_{i=1}^n \mathscr{X}_i$ Discrete domains : $\mathscr{X}_i = \{x_i^1, \dots, x_i^{k_i}\}$ Observation : $\mathbf{x} \in \mathscr{X}^N$

Crisp case : One probability distribution *p*

$$\mathbf{y} \succeq_{\rho,(\mathbf{x})} \mathbf{y}' \text{ if } \rho(\mathbf{y}|\mathbf{x}) \ge \rho(\mathbf{y}'|\mathbf{x})$$

 \Rightarrow Explanations by prime implicants are known

Credal case :

Probability distribution p replaced by convex sets of probabilities \mathcal{P}

Credal case :

Probability distribution p replaced by convex sets of probabilities \mathcal{P}

Robust classification :

Necessary recommendation $\mathbf{y} \succ_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$,

$$\mathbf{y} \succ_{\mathscr{P},(\mathbf{x})} \mathbf{y}' \Leftrightarrow \forall p \in \mathscr{P}, \ p(\mathbf{y}|\mathbf{x}) \ge p(\mathbf{y}'|\mathbf{x}) \Leftrightarrow \inf_{p \in \mathscr{P}} \frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y}'|\mathbf{x})} \ge 1$$

Credal case :

Probability distribution p replaced by convex sets of probabilities \mathcal{P}

Robust classification :

Incomparability $\mathbf{y} \succ \prec_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$,

$$\exists p \in \mathscr{P} \; \frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y}'|\mathbf{x})} < 1 \text{ and } \exists p' \in \mathscr{P} \frac{p'(\mathbf{y}'|\mathbf{x})}{p'(\mathbf{y}|\mathbf{x})} < 1$$

Credal case :

Probability distribution p replaced by convex sets of probabilities \mathcal{P}

Robust classification :

Incomparability $\mathbf{y} \succ \prec_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$,

$$\exists p \in \mathscr{P} \; \frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y}'|\mathbf{x})} < 1 \text{ and } \exists p' \in \mathscr{P} \frac{p'(\mathbf{y}'|\mathbf{x})}{p'(\mathbf{y}|\mathbf{x})} < 1$$
$$\Leftrightarrow \inf_{p \in \mathscr{P}} \frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y}'|\mathbf{x})} < 1 \text{ and } \inf_{p' \in \mathscr{P}} \frac{p'(\mathbf{y}'|\mathbf{x})}{p'(\mathbf{y}|\mathbf{x})} < 1$$

Data : ZOO dataset from UCI repository **Objective** : predict **y** in $\mathscr{Y} = \{ Mammal (M), Bird (B), Reptile (R), Fish (F) or Invertebrate (I) \}$

Data : ZOO dataset from UCI repository **Objective** : predict **y** in $\mathscr{Y} = \{ Mammal (M), Bird (B), Reptile (R), \}$ Fish (F) or Invertebrate (I) }

Features :

- feathers : { / X }
- eggs : {●, X}
- aquatic : $\{ \leq, X \}$
- toothed : { \n, \lambda }
- backbone : {\, X}

- breathes with lungs : {^h, X}
- venomous : {
- fins : { 🛶 💥 }
- legs : {**X**.

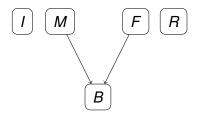
$$\{\mathbf{X}, 2 * \mathbf{S}, 4 * \mathbf{S}, 5 * \mathbf{S}, 6 * \mathbf{S}, 8 * \mathbf{S}\}$$

• tail : { \mathbf{n} , \mathbf{X} }

Observation :
$$\mathbb{N} = (X, X, \mathbb{C}, \mathbb{N}, \mathbb{N}, \mathbb{X}, \mathbb{X}, \mathbb{X})$$

Model :

- $\log p(M|\mathbb{N}) \in [-1.6, -0.012]$
- $\log p(B|\mathbb{N}) \in [-8.36, -3]$
- $\log p(R|\mathbb{N}) \in [-3.08, -0.016]$
- $\log p(F|\mathbb{N}) \in [-2.59, -0.029]$
- $\log p(I|\mathbb{N}) \in [-4.82, -0.45]$

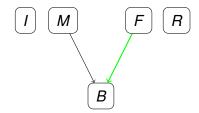


Observation :
$$\mathbb{N} = (X, X, \mathbb{C}, \mathbb{N}, \mathbb{N}, \mathbb{X}, \mathbb{X}, \mathbb{X})$$

Model :

- $\log p(M|\mathbb{N}) \in [-1.6, -0.012]$
- $\log p(B|\mathbb{N}) \in [-8.36, -3]$
- $\log p(R|\mathbb{N}) \in [-3.08, -0.016]$
- $\log p(F|\mathbb{N}) \in [-2.59, -0.029]$
- $\log p(I|\mathbb{N}) \in [-4.82, -0.45]$

$$F \succ_{\mathscr{P},(\mathbb{N}_{3})} B$$
 because $-2.59 + 3 \ge 0$

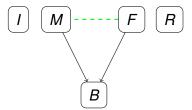


Observation : $\mathbb{N} = (X, X, \mathbb{C}, \mathbb{N}, \mathbb{N}, \mathbb{X}, \mathbb{X}, \mathbb{X})$ Model :

0

- $\log p(M|\mathbb{N}) \in [-1.6, -0.012]$
- $\log p(B|\mathbb{N}) \in [-8.36, -3]$
- $\log p(R|\mathbb{N}) \in [-3.08, -0.016]$
- $\log p(F|\mathbb{N}) \in [-2.59, -0.029]$
- $\log p(I|\mathbb{N}) \in [-4.82, -0.45]$

$$F \succ_{\mathscr{P},(\mathbb{N})} B$$
 because $-2.59 + 3 \ge 0$
 $M \succ_{\mathscr{P},(\mathbb{N})} F$ because $-1.6 + 0.029 < 0$

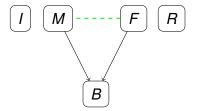


Observation : $\mathbb{N} = (X, X, \mathbb{C}, \mathbb{T}, \mathbb{N}, \mathbb{A}, X, \mathbb{X}, \mathbb{X})$ Model :

- $\log p(M|\mathbb{N}) \in [-1.6, -0.012]$
- $\log p(B|\mathbb{N}) \in [-8.36, -3]$
- $\log p(R|\mathbb{N}) \in [-3.08, -0.016]$
- $\log p(F|\mathbb{N}) \in [-2.59, -0.029]$
- $\log p(I|\mathbb{N}) \in [-4.82, -0.45]$

 $F \succ_{\mathscr{P},(\mathbb{I}_{3})} B$ because $-2.59 + 3 \ge 0$

 $M > \prec_{\mathscr{P},(\mathbb{N}_{0})} F$ because -1.6 + 0.029 < 0 and -2.59 + 0.012 < 0



... validatory

 $E \subseteq N$, as a subset of feature indices, is a validatory implicant of decision $\mathbf{y} >_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$ if :

$$\forall x_{-E} \in \mathscr{X}^{-E} \inf_{p \in \mathscr{P}} \frac{p(\mathbf{y}|(\mathbf{x}_{E}, x_{-E}))}{p(\mathbf{y}'|(\mathbf{x}_{E}, x_{-E}))} \geq 1$$

... validatory

 $E \subseteq N$, as a subset of feature indices, is a validatory implicant of decision $\mathbf{y} \succ_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$ if :

$$\forall x_{-E} \in \mathscr{X}^{-E} \inf_{\substack{p \in \mathscr{P} \\ p \in \mathscr{P}}} \frac{p(\mathbf{y}|(\mathbf{x}_{E}, x_{-E}))}{p(\mathbf{y}'|(\mathbf{x}_{E}, x_{-E}))} \ge 1$$
$$\Leftrightarrow \inf_{\substack{p \in \mathscr{P} \\ x_{-E} \in \mathscr{X}^{-E}}} \frac{p(\mathbf{y}|(\mathbf{x}_{E}, x_{-E}))}{p(\mathbf{y}'|(\mathbf{x}_{E}, x_{-E}))} \ge 1$$

9

... validatory

 $E \subseteq N$, as a subset of feature indices, is a validatory implicant of decision $\mathbf{y} \succ_{\mathscr{P},(\mathbf{x})} \mathbf{y}'$ if :

$$\forall x_{-E} \in \mathscr{X}^{-E} \inf_{\substack{p \in \mathscr{P} \\ p \in \mathscr{P} \\ x_{-E} \in \mathscr{X}^{-E}}} \frac{p(\mathbf{y}|(\mathbf{x}_{E}, x_{-E}))}{p(\mathbf{y}'|(\mathbf{x}_{E}, x_{-E}))} \ge 1$$

 $E \subseteq N$ is a *prime* implicant if $\forall i \in E$, the inequality does not hold, *i.e. E* is subset-minimal

For one decision, it might exists different prime implicants with different cardinals !

...validatory

i.e. observing \mathbf{x}_E is sufficient to conclude no matter the values on other attributes of \mathscr{X}^{-E}

 $E = \{ \text{'feathers'}, \text{'eggs'}, \text{'toothed'} \}$ is a prime implicant of $M \succ_{\mathscr{P}(\mathbb{N})} B$

Observation : $= (X, X, \subseteq, \mathbb{N}, \mathbb{A}, \mathbb{A}, \mathbb{A}, \mathbb{A}, \mathbb{X}, \mathbb{X}) \implies M \succ_{\mathscr{P}, \mathbb{A}} B$ Observation : $(\mathbb{A}_E, \mathbb{P}_{-E}) = ((X, X, \mathbb{N}), (\mathbb{P}, \mathbb{P}, \mathbb{A}, \mathbb{O}, \mathbb{P}, \mathbb{P}, \mathbb{P}))$ $\implies M \succ_{\mathscr{P}, \mathbb{A}_E, \mathbb{P}_E} B$

... contrastive and doubt?

Prime implicant can also be used for constrastive explanation

... contrastive and doubt?

Prime implicant can also be used for constrastive explanation

But also to explain incomparability !

... contrastive and doubt?

Prime implicant can also be used for constrastive explanation

But also to explain incomparability !

To know more come visit my poster 😌

Thank you for your attention !

