Constriction for Sets of Probabilities

Michele Caprio and Teddy Seidenfeld

PRECISE Center, Dept. of Computer and Information Science, University of Pennsylvania Depts. of Philosophy and Statistics, Carnegie Mellon University

```
    ISIPTA 2020J
11-14 JULY, OVIEDO (ASTURIAS) - SPAIN
```


Universidad de Oviedo

Motivation

- Bayes' rule $P(A \mid E)=\frac{P(E \mid A) P(A)}{P(E)}$ is arguably the most common updating rule for subjective beliefs
- Its IP version, called generalized Bayes' rule is given by

$$
\underline{P}(A \mid E)=\inf _{P \in \mathcal{P}} \frac{P(E \mid A) P(A)}{P(E)} \quad \text { and } \quad \bar{P}(A \mid E)=\sup _{P \in \mathcal{P}} \frac{P(E \mid A) P(A)}{P(E)}
$$

Motivation

- Bayes' rule $P(A \mid E)=\frac{P(E \mid A) P(A)}{P(E)}$ is arguably the most common updating rule for subjective beliefs
- Its IP version, called generalized Bayes' rule is given by

$$
\underline{P}(A \mid E)=\inf _{P \in \mathcal{P}} \frac{P(E \mid A) P(A)}{P(E)} \quad \text { and } \quad \bar{P}(A \mid E)=\sup _{P \in \mathcal{P}} \frac{P(E \mid A) P(A)}{P(E)}
$$

- "When we observe new evidence in the form of a partition \mathcal{E}, can we have that $[\underline{P}(A \mid E), \bar{P}(A \mid E)] \subset[\underline{P}(A), \bar{P}(A)]$, for all $E \in \mathcal{E}$?"

Motivation

- Not necessarily! For example, the inclusion does not hold
- if \mathcal{E} is a finite partition

Motivation

- Not necessarily! For example, the inclusion does not hold
- if \mathcal{E} is a finite partition
- if the IP interval is closed and (precise) probabilities are countably additive

Motivation

- Not necessarily! For example, the inclusion does not hold
- if \mathcal{E} is a finite partition
- if the IP interval is closed and (precise) probabilities are countably additive
- With generalized Bayes' updating
- Dilation - i.e. the opposite inclusion - is commonplace for IP neighborhood models ${ }^{1}$
- Constriction is possible only in specialized settings

[^0]
Motivation

- Not necessarily! For example, the inclusion does not hold
- if \mathcal{E} is a finite partition
- if the IP interval is closed and (precise) probabilities are countably additive
- With generalized Bayes' updating
- Dilation - i.e. the opposite inclusion - is commonplace for IP neighborhood models ${ }^{1}$
- Constriction is possible only in specialized settings
- "That is odd and fascinating! Can you tell us more about those settings?"
- That's the question we explore in this paper

[^1]
Three cases that allow for constriction

- No new evidence is collected

Three cases that allow for constriction

- No new evidence is collected
- Convex pooling of different opinions

Three cases that allow for constriction

- No new evidence is collected
- Convex pooling of different opinions
- Non-Bayesian updating

No new evidence

- If a generic procedure generates an IP set \mathcal{P} and prescribes a way of selecting one element P^{\star} from $\operatorname{Conv}(\mathcal{P})$, we give sufficient conditions for constriction

No new evidence

- If a generic procedure generates an IP set \mathcal{P} and prescribes a way of selecting one element P^{\star} from $\operatorname{Conv}(\mathcal{P})$, we give sufficient conditions for constriction
- Examples
- de Finetti's Fundamental Theorem of Probability (de Finetti, 1974, Section 3.10)
- Halmos' Extension (Halmos, 1950, Exercise 48.4), (Billingsley, 1995, Section 4.13)
- Jaynes' MaxEnt Kesavan (2008)
- Generalized Fiducial Inference Hannig et al. (2016)

Convex pooling

- DeGroot consensus model DeGroot (1974)
- k individuals, each having their own subjective probability distribution
- For agent i, the opinions of all the other $k-1$ agents represent new evidence

Convex pooling

- DeGroot consensus model DeGroot (1974)
- k individuals, each having their own subjective probability distribution
- For agent i, the opinions of all the other $k-1$ agents represent new evidence
- Instead of conditioning on those, agent i pools their own opinion with that of the other agents
- Repeating this process for all agent i, the group reaches (asymptotically) an agreement on a common subjective probability distribution

Non-Bayesian updating

- We give conditions for constricting when the agent endorses - Intentional forgetting Golding and MacLeod (1998)

Non-Bayesian updating

- We give conditions for constricting when the agent endorses
- Intentional forgetting Golding and MacLeod (1998)
- Levi-neutrality Levi (2009)

Non-Bayesian updating

- We give conditions for constricting when the agent endorses
- Intentional forgetting Golding and MacLeod (1998)
- Levi-neutrality Levi (2009)
- Geometric updating rule Gong and Meng (2021)

Non-Bayesian updating

- We give conditions for constricting when the agent endorses
- Intentional forgetting Golding and MacLeod (1998)
- Levi-neutrality Levi (2009)
- Geometric updating rule Gong and Meng (2021)
- Dempster's updating rule Dempster (1967)

Non-Bayesian updating

- We give conditions for constricting when the agent endorses
- Intentional forgetting Golding and MacLeod (1998)
- Levi-neutrality Levi (2009)
- Geometric updating rule Gong and Meng (2021)
- Dempster's updating rule Dempster (1967)
- Gärdenfors' generalized imaging updating rule Gärdenfors (1988)

Carthago delenda est

COME TO THE POSTER FOR MORE!

References I

Patrick Billingsley. Probability and Measure. New York, NY : Wiley, second edition, 1995.

Bruno de Finetti. Theory of Probability, volume 1. New York: Wiley, 1974.

Morris H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118-121, 1974.
Arthur Pentland Dempster. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38(2): 325-339, 1967.

Jonathan M. Golding and Colin M. MacLeod. Intentional forgetting: Interdisciplinary approaches. Mahwah, NJ : Lawrence Erlbaum Associates, 1998.

Ruobin Gong and Xiao-Li Meng. Judicious judgment meets unsettling updating: dilation, sure loss, and Simpson's paradox. Statistical Science, 36(2):169-190, 2021.

References II

Peter Gärdenfors. Knowledge in flux: Modeling the dynamics of epistemic states. Boston, MA : The MIT press, 1988.
Paul R. Halmos. Measure Theory. Graduate Texts in Mathematics. New York, NY: Springer, 1950.
Jan Hannig, Hari Iyer, Randy C. S. Lai, and Thomas C. M. Lee. Generalized fiducial inference: A review and new results. Journal of the American Statistical Association, 111(515):1346-1361, 2016.
Hiremagalur K. Kesavan. Jaynes' maximum entropy principle. In Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization. Boston, MA : Springer, 2008.
Isaac Levi. Why indeterminate probability is rational. Journal of Applied Logic, 7(4):364-376, 2009.

[^0]: ${ }^{1}$ except for Density Ratio neighborhoods

[^1]: ${ }^{1}$ except for Density Ratio neighborhoods

