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Motivation

Bayes’ rule P(A | E ) = P(E |A)P(A)
P(E) is arguably the most common

updating rule for subjective beliefs

Its IP version, called generalized Bayes’ rule is given by

P(A | E ) = inf
P∈P

P(E | A)P(A)
P(E )

and P(A | E ) = sup
P∈P

P(E | A)P(A)
P(E )

“When we observe new evidence in the form of a partition E , can we
have that [P(A | E ),P(A | E )] ⊂ [P(A),P(A)], for all E ∈ E?”
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Motivation

Not necessarily! For example, the inclusion does not hold

if E is a finite partition

if the IP interval is closed and (precise) probabilities are countably
additive

With generalized Bayes’ updating

Dilation – i.e. the opposite inclusion – is commonplace for IP
neighborhood models1

Constriction is possible only in specialized settings

“That is odd and fascinating! Can you tell us more about those
settings?”

That’s the question we explore in this paper

1except for Density Ratio neighborhoods
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Three cases that allow for constriction

No new evidence is collected

Convex pooling of different opinions

Non-Bayesian updating
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No new evidence

If a generic procedure generates an IP set P and prescribes a way of
selecting one element P⋆ from Conv(P), we give sufficient conditions
for constriction

Examples

de Finetti’s Fundamental Theorem of Probability (de Finetti, 1974,
Section 3.10)
Halmos’ Extension (Halmos, 1950, Exercise 48.4), (Billingsley, 1995,
Section 4.13)
Jaynes’ MaxEnt Kesavan (2008)
Generalized Fiducial Inference Hannig et al. (2016)

Caprio & Seidenfeld (UPenn and CMU) Constriction for Sets of Probabilities July 13, 2023 4 / 6



No new evidence

If a generic procedure generates an IP set P and prescribes a way of
selecting one element P⋆ from Conv(P), we give sufficient conditions
for constriction

Examples

de Finetti’s Fundamental Theorem of Probability (de Finetti, 1974,
Section 3.10)
Halmos’ Extension (Halmos, 1950, Exercise 48.4), (Billingsley, 1995,
Section 4.13)
Jaynes’ MaxEnt Kesavan (2008)
Generalized Fiducial Inference Hannig et al. (2016)

Caprio & Seidenfeld (UPenn and CMU) Constriction for Sets of Probabilities July 13, 2023 4 / 6



Convex pooling

DeGroot consensus model DeGroot (1974)

k individuals, each having their own subjective probability distribution

For agent i , the opinions of all the other k − 1 agents represent new
evidence

Instead of conditioning on those, agent i pools their own opinion with
that of the other agents

Repeating this process for all agent i , the group reaches
(asymptotically) an agreement on a common subjective probability
distribution
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Non-Bayesian updating

We give conditions for constricting when the agent endorses

Intentional forgetting Golding and MacLeod (1998)

Levi-neutrality Levi (2009)
Geometric updating rule Gong and Meng (2021)
Dempster’s updating rule Dempster (1967)
Gärdenfors’ generalized imaging updating rule Gärdenfors (1988)
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Carthago delenda est

COME TO THE POSTER FOR MORE!
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