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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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sublinear expectation 𝐸 : D ⊆ ℝ𝛺 → ℝ

{𝛼 ∈ ℝ𝛺 : 𝛼 constant} ⊆ D

constant preserving:
𝐸 (𝛼) = 𝛼 for all 𝛼 ∈ ℝisotone:
𝐸 ( 𝑓 ) ≤ 𝐸 (𝑔) for all 𝑓 ≤ 𝑔 ∈ Dsublinear:
𝐸 (𝜇 𝑓 + 𝑔) ≤ 𝜇𝐸 ( 𝑓 ) + 𝐸 (𝑔)for all 𝜇 ∈ ℝ≥0 and 𝑓 , 𝑔, 𝜇 𝑓 + 𝑔 ∈ D
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sublinear expectation 𝐸 : D ⊆ ℝ𝛺 → ℝ

D ⊆ L(𝛺) is a linear space

𝐸 is a coherent upper prevision
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0

𝑋𝑡

𝑡

∈ 𝒳: 𝛺 → 𝒳 : 𝜔 ↦→ 𝜔(𝑡)

𝑡1

𝑋𝑡1

𝑡2

𝑋𝑡2

𝑡𝑛

𝑋𝑡𝑛𝑔
( )

𝛺 ⊆ 𝒳ℝ≥0 ‘some’ set of paths 𝜔 : ℝ≥0 → 𝒳

D B {
𝑔(𝑋𝑡1 , . . . , 𝑋𝑡𝑛) : 𝑛 ∈ ℕ, 𝑡1 < · · · < 𝑡𝑛 ∈ ℝ≥0, 𝑔 ∈ L(𝒳𝑛)}

¿sublinear expectatation 𝐸 on D?¡sublinear Markov process!
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Sublinear Expectations ...
For a domain D ⊆ ℝ𝛺 which includes all constantfunctions, a sublinear/linear expectation on D is afunctional 𝐸/𝐸 : D → ℝ that is constantpreserving, isotone and ...

... sublinear, meaning that
𝐸 (𝛼 𝑓 + 𝑔) ≤ 𝛼𝐸 ( 𝑓 ) + 𝐸 (𝑔)

for all 𝑓 , 𝑔 ∈ D and 𝛼 ∈ ℝ≥0 with 𝛼 𝑓 + 𝑔 ∈ D.

... linear, meaning that
𝐸 (𝛼 𝑓 + 𝑔) = 𝛼𝐸 ( 𝑓 ) + 𝐸 (𝑔)

for all 𝑓 , 𝑔 ∈ D and 𝛼 ∈ ℝ with 𝛼 𝑓 + 𝑔 ∈ D.

Such a sublinear expectation 𝐸 is said to bedownward continuous on S ⊆ D if
lim

𝑛→+∞
𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↘ 𝑓 ∈ S

and upward continuous on S ⊆ D if
lim

𝑛→+∞
𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↗ 𝑓 ∈ S.

Suppose D ⊆ L(𝛺) is a linear lattice.
𝐸 is downward (& then upward) continuouson D iff every dominated linear expectation in

𝔼𝐸 B
{
𝐸 ∈ 𝔼(D) : (∀ 𝑓 ∈ D) 𝐸 ( 𝑓 ) ≤ 𝐸 ( 𝑓 )}

is downward continuous.

𝐸 is downward (& then upward) continuouson D iff there is a unique probability mea-sure 𝑃𝐸 on 𝜎(D) such that
𝐸 ( 𝑓 ) =

∫
𝑓 d𝑃𝐸 for all 𝑓 ∈ D .

Theorem
The sublinear expectation 𝐸𝜎 extends 𝐸 ,is downward continuous on D𝛿 ∩ L(𝛺) andupward continuous on Mb(D).
On Mb(D), this extension is unique.

also for convex
𝐸 Let M(D) B Mb(D) ∪ Mb(D) be the set of

𝜎(D)-measurable variables 𝑓 ∈ ℝ𝛺 that arebounded below/above and let
𝐸𝜎 : M(D) → ℝ : 𝑓 ↦→ sup

{∫
𝑓 d𝑃𝐸 : 𝐸 ∈ 𝔼𝐸

}
.
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straightforward modification

... for Countable-State Uncertain Processes
Let 𝒳 denote the countable state space. The possibility space 𝛺 is some set of paths 𝜔 : ℝ≥0 → 𝒳, and the domain D are the finitary bounded variables:

D B {
𝑔(𝑋𝑡1, . . . , 𝑋𝑡𝑛) : 𝑛 ∈ ℕ, 𝑡1 < · · · < 𝑡𝑛 ∈ ℝ≥0, 𝑔 ∈ L(𝒳𝑛)} with 𝑋𝑡 : 𝛺 → 𝒳 : 𝜔 ↦→ 𝜔(𝑡).

sublinear expectation 𝐸0 on L(𝒳) Theorem
There is a unique sublinear expectation 𝐸 on Dsuch that
(i) 𝐸 (

𝑔(𝑋0)
)
= 𝐸0(𝑔) for all 𝑔 ∈ L(𝒳) and

(ii) for all 𝑠1 < · · · < 𝑠𝑛 < 𝑡 ∈ ℝ≥0 and 𝑔 ∈ L(𝒳𝑛+1),
𝐸
(
𝑔(𝑋𝑠1, . . . , 𝑋𝑠𝑛, 𝑋𝑡)

)
= 𝐸

(
ℎ(𝑋𝑠1, . . . , 𝑋𝑠𝑛)

)
with ℎ ∈ L(𝒳{𝑠1,...,𝑠𝑛}) defined by
ℎ(𝑥𝑠1, . . . , 𝑥𝑠𝑛) B T𝑡−𝑠𝑛

[
𝑔(𝑥𝑠1, . . . , 𝑥𝑠𝑛, •)

] (𝑥𝑠𝑛).

semigroup (
T𝑡 : L(𝒳) → L(𝒳)) 𝑡∈ℝ≥0

of ‘sublineartransition operators’:
(i)T𝑡 [•] (𝑥) is a sublinear expectation
(ii)T0 = I

(iii)T𝑠+𝑡 = T𝑠 ◦ T𝑡

¡sublinear Markov process!

¿sublinear process 𝐸 on D?

(∀𝑛 ∈ ℕ; 𝑡1 < · · · 𝑡𝑛 ∈ ℝ≥0; 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳) (∃𝜔 ∈ 𝛺)
𝜔(𝑡1) = 𝑥1, . . . , 𝜔(𝑡𝑛) = 𝑥𝑛

Is this corresponding 𝐸 downward continuous on D?

𝛺 B cdlg(𝒳ℝ≥0) ⊊ 𝒳ℝ≥0

𝐸0 is downward continuous&
T𝑡 [•] (𝑥) is downward continuous&(
T𝑡

)
𝑡∈ℝ≥0

has uniformly bounded rate

𝐸 is downward continuous on D

M(D) is sufficiently rich

𝛺 B 𝒳ℝ≥0

𝐸0 is downward continuous&
T𝑡 [•] (𝑥) is downward continuous

𝐸 is downward continuous on D

M(D) is not sufficiently rich

For some ‘bounded sublinear rate operator’
Q: L(𝒳) → L(𝒳),

T𝑡 = 𝑒𝑡Q B lim
𝑛→+∞

(
I + 𝑡

𝑛
Q
)𝑛 for all 𝑡 ∈ ℝ≥0;

whenever this is the case,
d

d𝑡
T𝑡 B lim

𝑠→𝑡

T𝑠 − T𝑡

|𝑠 − 𝑡 | = QT𝑡 for all 𝑡 ∈ ℝ≥0.

A semigroup (
T𝑡

)
𝑡∈ℝ>0

of sublinear transition oper-ators ...
... has uniformly bounded rate if

lim sup
𝑡↘0

1

𝑡
sup

{
T𝑡 [1 − 𝕀𝑥] (𝑥) : 𝑥 ∈ 𝒳

}
< +∞,

or equivalently, lim sup𝑡↘0
1
𝑡 ∥T𝑡 − I∥ < +∞ .

... is uniformly continuous if
lim
𝑡↘0

∥T𝑡 − I∥ = 0.

sublinear Poisson process
Fix some rate interval [𝜆, 𝜆] ⊂ ℝ≥0, and take
𝒳 B ℤ≥0, 𝐸0(𝑔) B 𝑔(0) & (

T𝑡

)
𝑡∈ℝ≥0

B
(
𝑒𝑡L

)
𝑡∈ℝ≥0

,

where L: L(𝒳) → L(𝒳) maps 𝑔 ∈ L(𝒳) to
𝒳 → ℝ : 𝑥 ↦→ max

{
𝜆
(
𝑔(𝑥 + 1) − 𝑔(𝑥)) : 𝜆 ∈ [𝜆, 𝜆]}. Alexander Erreygers

Cool, on Mb(D) there is a . . . . . . ‘suf-ficiently continuous’ extension of thedownward continuous sublinear expec-tation 𝐸 on D!
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𝐸 is downward continuous on D

M(D) is sufficiently rich

𝛺 B 𝒳ℝ≥0

𝐸0 is downward continuous&
T𝑡 [•] (𝑥) is downward continuous

𝐸 is downward continuous on D

M(D) is not sufficiently rich

For some ‘bounded sublinear rate operator’
Q: L(𝒳) → L(𝒳),

T𝑡 = 𝑒𝑡Q B lim
𝑛→+∞

(
I + 𝑡

𝑛
Q
)𝑛 for all 𝑡 ∈ ℝ≥0;

whenever this is the case,
d

d𝑡
T𝑡 B lim

𝑠→𝑡

T𝑠 − T𝑡

|𝑠 − 𝑡 | = QT𝑡 for all 𝑡 ∈ ℝ≥0.

A semigroup (
T𝑡

)
𝑡∈ℝ>0

of sublinear transition oper-ators ...
... has uniformly bounded rate if

lim sup
𝑡↘0

1

𝑡
sup

{
T𝑡 [1 − 𝕀𝑥] (𝑥) : 𝑥 ∈ 𝒳

}
< +∞,

or equivalently, lim sup𝑡↘0
1
𝑡 ∥T𝑡 − I∥ < +∞ .

... is uniformly continuous if
lim
𝑡↘0

∥T𝑡 − I∥ = 0.

sublinear Poisson process
Fix some rate interval [𝜆, 𝜆] ⊂ ℝ≥0, and take
𝒳 B ℤ≥0, 𝐸0(𝑔) B 𝑔(0) & (

T𝑡

)
𝑡∈ℝ≥0

B
(
𝑒𝑡L

)
𝑡∈ℝ≥0

,

where L: L(𝒳) → L(𝒳) maps 𝑔 ∈ L(𝒳) to
𝒳 → ℝ : 𝑥 ↦→ max

{
𝜆
(
𝑔(𝑥 + 1) − 𝑔(𝑥)) : 𝜆 ∈ [𝜆, 𝜆]}. Alexander Erreygers

Cool, on Mb(D) there is a . . . . . . ‘suf-ficiently continuous’ extension of thedownward continuous sublinear expec-tation 𝐸 on D!

Sublinear Expectations ...
For a domain D ⊆ ℝ𝛺 which includes all constantfunctions, a sublinear/linear expectation on D is afunctional 𝐸/𝐸 : D → ℝ that is constantpreserving, isotone and ...

... sublinear, meaning that
𝐸 (𝛼 𝑓 + 𝑔) ≤ 𝛼𝐸 ( 𝑓 ) + 𝐸 (𝑔)

for all 𝑓 , 𝑔 ∈ D and 𝛼 ∈ ℝ≥0 with 𝛼 𝑓 + 𝑔 ∈ D.

... linear, meaning that
𝐸 (𝛼 𝑓 + 𝑔) = 𝛼𝐸 ( 𝑓 ) + 𝐸 (𝑔)

for all 𝑓 , 𝑔 ∈ D and 𝛼 ∈ ℝ with 𝛼 𝑓 + 𝑔 ∈ D.

Such a sublinear expectation 𝐸 is said to bedownward continuous on S ⊆ D if
lim

𝑛→+∞
𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↘ 𝑓 ∈ S

and upward continuous on S ⊆ D if
lim

𝑛→+∞
𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↗ 𝑓 ∈ S.

Suppose D ⊆ L(𝛺) is a linear lattice.
𝐸 is downward (& then upward) continuouson D iff every dominated linear expectation in

𝔼𝐸 B
{
𝐸 ∈ 𝔼(D) : (∀ 𝑓 ∈ D) 𝐸 ( 𝑓 ) ≤ 𝐸 ( 𝑓 )}

is downward continuous.

𝐸 is downward (& then upward) continuouson D iff there is a unique probability mea-sure 𝑃𝐸 on 𝜎(D) such that
𝐸 ( 𝑓 ) =

∫
𝑓 d𝑃𝐸 for all 𝑓 ∈ D .

Theorem
The sublinear expectation 𝐸𝜎 extends 𝐸 ,is downward continuous on D𝛿 ∩ L(𝛺) andupward continuous on Mb(D).
On Mb(D), this extension is unique.

also for convex
𝐸 Let M(D) B Mb(D) ∪ Mb(D) be the set of

𝜎(D)-measurable variables 𝑓 ∈ ℝ𝛺 that arebounded below/above and let
𝐸𝜎 : M(D) → ℝ : 𝑓 ↦→ sup

{∫
𝑓 d𝑃𝐸 : 𝐸 ∈ 𝔼𝐸

}
.
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1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
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E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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straightforward modification

... for Countable-State Uncertain Processes
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𝑔(𝑋𝑡1, . . . , 𝑋𝑡𝑛) : 𝑛 ∈ ℕ, 𝑡1 < · · · < 𝑡𝑛 ∈ ℝ≥0, 𝑔 ∈ L(𝒳𝑛)} with 𝑋𝑡 : 𝛺 → 𝒳 : 𝜔 ↦→ 𝜔(𝑡).

sublinear expectation 𝐸0 on L(𝒳) Theorem
There is a unique sublinear expectation 𝐸 on Dsuch that
(i) 𝐸 (

𝑔(𝑋0)
)
= 𝐸0(𝑔) for all 𝑔 ∈ L(𝒳) and

(ii) for all 𝑠1 < · · · < 𝑠𝑛 < 𝑡 ∈ ℝ≥0 and 𝑔 ∈ L(𝒳𝑛+1),
𝐸
(
𝑔(𝑋𝑠1, . . . , 𝑋𝑠𝑛, 𝑋𝑡)

)
= 𝐸

(
ℎ(𝑋𝑠1, . . . , 𝑋𝑠𝑛)

)
with ℎ ∈ L(𝒳{𝑠1,...,𝑠𝑛}) defined by
ℎ(𝑥𝑠1, . . . , 𝑥𝑠𝑛) B T𝑡−𝑠𝑛

[
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𝐸0 is downward continuous&
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)
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𝐸 is downward continuous on D

M(D) is sufficiently rich
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𝐸0 is downward continuous&
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M(D) is not sufficiently rich

For some ‘bounded sublinear rate operator’
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T𝑡 = 𝑒𝑡Q B lim
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(
I + 𝑡

𝑛
Q
)𝑛 for all 𝑡 ∈ ℝ≥0;

whenever this is the case,
d
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T𝑡 B lim
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T𝑠 − T𝑡

|𝑠 − 𝑡 | = QT𝑡 for all 𝑡 ∈ ℝ≥0.

A semigroup (
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)
𝑡∈ℝ>0

of sublinear transition oper-ators ...
... has uniformly bounded rate if

lim sup
𝑡↘0

1

𝑡
sup

{
T𝑡 [1 − 𝕀𝑥] (𝑥) : 𝑥 ∈ 𝒳

}
< +∞,

or equivalently, lim sup𝑡↘0
1
𝑡 ∥T𝑡 − I∥ < +∞ .

... is uniformly continuous if
lim
𝑡↘0

∥T𝑡 − I∥ = 0.

sublinear Poisson process
Fix some rate interval [𝜆, 𝜆] ⊂ ℝ≥0, and take
𝒳 B ℤ≥0, 𝐸0(𝑔) B 𝑔(0) & (

T𝑡

)
𝑡∈ℝ≥0

B
(
𝑒𝑡L

)
𝑡∈ℝ≥0

,

where L: L(𝒳) → L(𝒳) maps 𝑔 ∈ L(𝒳) to
𝒳 → ℝ : 𝑥 ↦→ max

{
𝜆
(
𝑔(𝑥 + 1) − 𝑔(𝑥)) : 𝜆 ∈ [𝜆, 𝜆]}. Alexander Erreygers

Cool, on Mb(D) there is a . . . . . . ‘suf-ficiently continuous’ extension of thedownward continuous sublinear expec-tation 𝐸 on D!
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Many interesting variables are not included in D!
D does not include

the average of 𝑔(𝑋𝑡 ) over [0, 𝑇] for some 𝑔 ∈ L(𝒳), so
1

𝑇

∫ 𝑇

0
𝑔(𝑋𝑡 )d𝑡 : 𝛺 → ℝ : 𝜔 ↦→ 1

𝑇

∫ 𝑇

0
𝑔
(
𝜔(𝑡)) d𝑡;

the hitting time of 𝐴 ⊆ 𝒳, so
𝜏𝐴 : 𝛺 → ℝ≥0 : 𝜔 ↦→ inf

{
𝑡 ∈ ℝ≥0 : 𝜔(𝑡) ∈ 𝐴

}
.
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sublinear expectation 𝐸 : D ⊆ ℝ𝛺 → ℝ

downward continuous on S ⊆ D if
lim

𝑛→+∞ 𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↘ 𝑓 ∈ S

upward continuous on S ⊆ D if
lim

𝑛→+∞ 𝐸 ( 𝑓𝑛) = 𝐸 ( 𝑓 ) for all Sℕ ∋ ( 𝑓𝑛)𝑛∈ℕ ↗ 𝑓 ∈ S

10



sublinear expectation 𝐸 : D ⊆ ℝ𝛺 → ℝ

D ⊆ L(𝛺) is a linear lattice𝐸 is downward continuous on D

There is a unique sublinear expectation 𝐸★ on D★ that
extends 𝐸 ,
is downward continuous on D𝛿 ∩ L(𝛺) and
upward continuous on D★.

𝑓 ∈ ℝ𝛺 bounded & 𝜎(D)-measurable
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sublinear expectation 𝐸 : D ⊆ ℝ𝛺 → ℝ

D ⊆ L(𝛺) is a linear lattice𝐸 is downward continuous on D

There is a sublinear expectation 𝐸𝜎 on D𝜎 that
extends 𝐸 ,
is downward continuous on D𝛿 ∩ L(𝛺) and
upward continuous on { 𝑓 ∈ D𝜎 : inf 𝑓 > −∞}.

𝑓 ∈ ℝ𝛺 bounded below/above& 𝜎(D)-measurable

10



¿Markovian 𝐸 downward continuous on D?

¿D𝜎 sufficiently large?
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Sublinear Expectations ...
For a domain D ⊆ ℝ𝛺 which includes all constantfunctions, a sublinear/linear expectation on D is afunctional 𝐸/𝐸 : D → ℝ that is constantpreserving, isotone and ...

... sublinear, meaning that
𝐸 (𝛼 𝑓 + 𝑔) ≤ 𝛼𝐸 ( 𝑓 ) + 𝐸 (𝑔)
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is downward continuous.

𝐸 is downward (& then upward) continuouson D iff there is a unique probability mea-sure 𝑃𝐸 on 𝜎(D) such that
𝐸 ( 𝑓 ) =

∫
𝑓 d𝑃𝐸 for all 𝑓 ∈ D .

Theorem
The sublinear expectation 𝐸𝜎 extends 𝐸 ,is downward continuous on D𝛿 ∩ L(𝛺) andupward continuous on Mb(D).
On Mb(D), this extension is unique.

also for convex
𝐸 Let M(D) B Mb(D) ∪ Mb(D) be the set of
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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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straightforward modification

... for Countable-State Uncertain Processes
Let 𝒳 denote the countable state space. The possibility space 𝛺 is some set of paths 𝜔 : ℝ≥0 → 𝒳, and the domain D are the finitary bounded variables:

D B {
𝑔(𝑋𝑡1, . . . , 𝑋𝑡𝑛) : 𝑛 ∈ ℕ, 𝑡1 < · · · < 𝑡𝑛 ∈ ℝ≥0, 𝑔 ∈ L(𝒳𝑛)} with 𝑋𝑡 : 𝛺 → 𝒳 : 𝜔 ↦→ 𝜔(𝑡).

sublinear expectation 𝐸0 on L(𝒳) Theorem
There is a unique sublinear expectation 𝐸 on Dsuch that
(i) 𝐸 (

𝑔(𝑋0)
)
= 𝐸0(𝑔) for all 𝑔 ∈ L(𝒳) and

(ii) for all 𝑠1 < · · · < 𝑠𝑛 < 𝑡 ∈ ℝ≥0 and 𝑔 ∈ L(𝒳𝑛+1),
𝐸
(
𝑔(𝑋𝑠1, . . . , 𝑋𝑠𝑛, 𝑋𝑡)

)
= 𝐸

(
ℎ(𝑋𝑠1, . . . , 𝑋𝑠𝑛)

)
with ℎ ∈ L(𝒳{𝑠1,...,𝑠𝑛}) defined by
ℎ(𝑥𝑠1, . . . , 𝑥𝑠𝑛) B T𝑡−𝑠𝑛

[
𝑔(𝑥𝑠1, . . . , 𝑥𝑠𝑛, •)

] (𝑥𝑠𝑛).

semigroup (
T𝑡 : L(𝒳) → L(𝒳)) 𝑡∈ℝ≥0

of ‘sublineartransition operators’:
(i)T𝑡 [•] (𝑥) is a sublinear expectation
(ii)T0 = I

(iii)T𝑠+𝑡 = T𝑠 ◦ T𝑡

¡sublinear Markov process!

¿sublinear process 𝐸 on D?

(∀𝑛 ∈ ℕ; 𝑡1 < · · · 𝑡𝑛 ∈ ℝ≥0; 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳) (∃𝜔 ∈ 𝛺)
𝜔(𝑡1) = 𝑥1, . . . , 𝜔(𝑡𝑛) = 𝑥𝑛

Is this corresponding 𝐸 downward continuous on D?

𝛺 B cdlg(𝒳ℝ≥0) ⊊ 𝒳ℝ≥0

𝐸0 is downward continuous&
T𝑡 [•] (𝑥) is downward continuous&(
T𝑡

)
𝑡∈ℝ≥0

has uniformly bounded rate

𝐸 is downward continuous on D

M(D) is sufficiently rich

𝛺 B 𝒳ℝ≥0

𝐸0 is downward continuous&
T𝑡 [•] (𝑥) is downward continuous

𝐸 is downward continuous on D

M(D) is not sufficiently rich

For some ‘bounded sublinear rate operator’
Q: L(𝒳) → L(𝒳),

T𝑡 = 𝑒𝑡Q B lim
𝑛→+∞

(
I + 𝑡

𝑛
Q
)𝑛 for all 𝑡 ∈ ℝ≥0;

whenever this is the case,
d

d𝑡
T𝑡 B lim

𝑠→𝑡

T𝑠 − T𝑡

|𝑠 − 𝑡 | = QT𝑡 for all 𝑡 ∈ ℝ≥0.

A semigroup (
T𝑡

)
𝑡∈ℝ>0

of sublinear transition oper-ators ...
... has uniformly bounded rate if

lim sup
𝑡↘0

1

𝑡
sup

{
T𝑡 [1 − 𝕀𝑥] (𝑥) : 𝑥 ∈ 𝒳

}
< +∞,

or equivalently, lim sup𝑡↘0
1
𝑡 ∥T𝑡 − I∥ < +∞ .

... is uniformly continuous if
lim
𝑡↘0

∥T𝑡 − I∥ = 0.

sublinear Poisson process
Fix some rate interval [𝜆, 𝜆] ⊂ ℝ≥0, and take
𝒳 B ℤ≥0, 𝐸0(𝑔) B 𝑔(0) & (

T𝑡

)
𝑡∈ℝ≥0

B
(
𝑒𝑡L

)
𝑡∈ℝ≥0

,

where L: L(𝒳) → L(𝒳) maps 𝑔 ∈ L(𝒳) to
𝒳 → ℝ : 𝑥 ↦→ max

{
𝜆
(
𝑔(𝑥 + 1) − 𝑔(𝑥)) : 𝜆 ∈ [𝜆, 𝜆]}. Alexander Erreygers

Cool, on Mb(D) there is a . . . . . . ‘suf-ficiently continuous’ extension of thedownward continuous sublinear expec-tation 𝐸 on D!


