Sublinear Expectations for Countable-State Uncertain Processes

Alexander Erreygers Foundations Lab for imprecise probabilities – Ghent University

ISIPTA 2023

Banach J. Math. Anal. 12 (2018), no. 3, 515–540 https://doi.org/10.1215/17358787-2017-0024 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

KOLMOGOROV-TYPE AND GENERAL EXTENSION RESULTS FOR NONLINEAR EXPECTATIONS

ROBERT DENK, MICHAEL KUPPER, * and MAX NENDEL

Sublinear Expectations for Countable-State Uncertain Processes

sublinear expectation $\overline{E} \colon \mathcal{D} \subseteq \overline{\mathbb{R}}^{\Omega} \to \overline{\mathbb{R}}$

 $\{\alpha \in \mathbb{R}^{\Omega} : \alpha \text{ constant}\} \subseteq \mathcal{D}$

constant preserving:

 $\overline{E}(\alpha) = \alpha$ for all $\alpha \in \mathbb{R}$

isotone:

 $\overline{E}(f) \leq \overline{E}(g)$ for all $f \leq g \in \mathcal{D}$ sublinear:

 $\overline{E}(\mu f + g) \le \mu \overline{E}(f) + \overline{E}(g)$ for all $\mu \in \mathbb{R}_{\ge 0}$ and $f, g, \mu f + g \in \mathcal{D}$

Sublinear Expectations for Countable-State Uncertain Processes

$$\Omega \subseteq \mathcal{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathcal{X}$

$$\Omega \subseteq \mathscr{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathscr{X}$

$$\mathcal{D} \coloneqq \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\ge 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

$$\Omega \subseteq \mathscr{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathscr{X}$

$$\xrightarrow{g(X_{t_1} \times x_{t_1})}$$
 $\xrightarrow{g(X_{t_1} \times x_{t_1})}$ $\xrightarrow{g(X_{t_1} \times x_{t_1})}$ $\xrightarrow{g(X_{t_1} \times x_{t_1})}$ $\xrightarrow{g(X_{t_1} \times x_{t_1})}$ $\xrightarrow{g(X_{t_1} \times x_{t_1})}$

$$\mathcal{D} \coloneqq \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

$$\Omega \subseteq \mathscr{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathscr{X}$

$$\mathcal{D} \coloneqq \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\ge 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

... for Countable-State Uncertain Processes

Let \mathscr{X} denote the countable state space. The possibility space \varOmega is some set of *paths* $\omega : \mathbb{R}_{\geq 0} \to \mathscr{X}$, and the domain \mathscr{D} are the finitary bounded variables:

 $\mathcal{D} := \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\} \quad \text{with } X_t \colon \mathcal{Q} \to \mathcal{X} \colon \omega \mapsto \omega(t).$

7

Many interesting variables are *not* included in \mathcal{D} !

Many interesting variables are *not* included in $\mathcal{D}!$

${\mathcal D}$ does not include

In the average of $g(X_t)$ over [0,T] for some $g \in \mathcal{L}(\mathcal{X})$, so

$$\frac{1}{T}\int_0^T g(X_t) \mathrm{d}t \colon \mathcal{Q} \to \mathbb{R} \colon \omega \mapsto \frac{1}{T}\int_0^T g(\omega(t)) \,\mathrm{d}t.$$

 \circ the hitting time of $A \subseteq \mathcal{X}$, so

$$\tau_A \colon \Omega \to \overline{\mathbb{R}}_{\geq 0} \colon \omega \mapsto \inf \{ t \in \mathbb{R}_{\geq 0} \colon \omega(t) \in A \}.$$

Monographs on Statistics and Applied Probability 42

Statistical Reasoning with Imprecise Probabilities

Peter Walley

🏀 Springer-Science+Business Media, B.V.

$$\mathcal{D} \subseteq \mathcal{L}(\Omega)$$
$$\mathcal{L}(\Omega)$$

sublinear expectation $\overline{E} \colon \mathcal{D} \subseteq \overline{\mathbb{R}}^{\mathcal{Q}} \to \overline{\mathbb{R}}$

downward continuous on $\mathcal{S}\subseteq \mathcal{D}$ if

$$\lim_{n \to +\infty} \overline{E}(f_n) = \overline{E}(f) \text{ for all } \mathcal{S}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow f \in \mathcal{S}$$

upward continuous on $\mathcal{S}\subseteq \mathcal{D}$ if

$$\lim_{n \to +\infty} \overline{E}(f_n) = \overline{E}(f) \text{ for all } \mathcal{S}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \nearrow f \in \mathcal{S}$$

¿Markovian \overline{E} downward continuous on \mathcal{D} ?

\mathcal{D}^{σ} sufficiently large?

Sublinear Expectations ...

... for Countable-State Uncertain Processes

