Uncertainty Propagation using Copulas in a 3D Stereo Matching Pipeline

Roman Malinowski Sébastien Destercke Emmanuel Dubois Loïc Dumas Emmanuelle Sarrazin

CNES - CS Group - Université de Technologie de Compiègne

July 12, 2023

CNES CO3D mission

Figure: CARS 3D pipeline [Youssefi et al., 2020]

CNES CO3D mission

Figure: CARS 3D pipeline [Youssefi et al., 2020]

• Uncertainty on the input images

CNES CO3D mission

Figure: CARS 3D pipeline [Youssefi et al., 2020]

- Uncertainty on the input images
- Caracterizing the uncertainty of the output height map

Stereo-matching

Stereo-matching

Figure: Cost function [Cournet et al., 2020]

2/11

69	52	123
58	85	174
62	135	181

58	151	185
99	180	176
157	183	175

69	52	123
58	85	174
62	135	181

58	151	185
99	180	176
157	183	175

69	52	123
58	85	174
62	135	181

58	151	185
99	180	176
157	183	175

11	99	62
41	95	2
95	48	6

69	52	123
58	85	174
62	135	181

58	151	185
99	180	176
157	183	175

11	99	62
41	95	2
95	48	6

$$\sum^{\downarrow}$$

69	52	123
58	85	174
62	135	181

58	151	185
99	180	176
157	183	175

	11	99	62
ſ	41	95	2
ſ	95	48	6

$$\stackrel{\downarrow}{\Sigma}$$

459

Noise on the sensor

- Noise on the sensor
- Pre-processing (resampling)

- Noise on the sensor
- Pre-processing (resampling)
- Integer quantification

- Noise on the sensor
- Pre-processing (resampling)
- Integer quantification

We use possibility distributions as our uncertainty models

Uncertainty on the images

	14		
69	52	123	
58	85	174	
62	135	181	

58	151	185
99	180	176
157	183	175

Uncertainty on the images

μ

α

0 L 83

 π_X

84

85

86

87

		ł				
	69	52	123		58	151
	58	85	174		99	180
	62	135	181		157	183
1 -		· 		1 - ≽ β -	-π _Y	

185

176

175

Theorem ([Sklar, 1959])

Every multivariate CDF F can be expressed in terms of its marginals $F_i(x_i) = P(X_i \le x_i)$ and a unique copula C: $F(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n))$

Theorem ([Sklar, 1959])

Every multivariate CDF F can be expressed in terms of its marginals $F_i(x_i) = P(X_i \le x_i)$ and a unique copula C: $F(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n))$

Ideally, we would like to know

$$\mathcal{M}_{robust} = \{ P_{XY} \mid F_{XY} = C(F_X, F_Y) \}$$

with $F_X \in \mathcal{M}(\pi_X), F_Y \in \mathcal{M}(\pi_Y)$

Theorem ([Sklar, 1959])

Every multivariate CDF F can be expressed in terms of its marginals $F_i(x_i) = P(X_i \le x_i)$ and a unique copula C: $F(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n))$

Ideally, we would like to know

$$\mathcal{M}_{robust} = \{ P_{XY} \mid F_{XY} = C(F_X, F_Y) \}$$

with $F_X \in \mathcal{M}(\pi_X), F_Y \in \mathcal{M}(\pi_Y)$

This set is hard to compute.

Another approach is to apply the copula to the mass functions [Ferson et al., 2004]:

$$m_{XY}(A,B) = \Delta C(\sum_{a \leqslant A} m_X(a), \sum_{b \leqslant B} m_Y(b))$$

with ΔC being the H-Volume of the copula C

Another approach is to apply the copula to the mass functions [Ferson et al., 2004]:

$$m_{XY}(A,B) = \Delta C(\sum_{a \leqslant A} m_X(a), \sum_{b \leqslant B} m_Y(b))$$

with ΔC being the H-Volume of the copula C The joint credal set is:

$$\mathcal{M}_{mass} = \{ P \mid P \geqslant \mathit{Bel}_{XY} \}$$

Another approach is to apply the copula to the mass functions [Ferson et al., 2004]:

$$m_{XY}(A,B) = \Delta C(\sum_{a \leqslant A} m_X(a), \sum_{b \leqslant B} m_Y(b))$$

with ΔC being the H-Volume of the copula C The joint credal set is:

$$\mathcal{M}_{mass} = \{ P \mid P \geqslant \mathit{Bel}_{XY} \}$$

Can \mathcal{M}_{mass} be an (outer) approximation of \mathcal{M}_{robust} ?

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

We observe that if π_X, π_Y are:

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

We observe that if π_X, π_Y are:

Unimodal

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

We observe that if π_X, π_Y are:

- Unimodal
- Symmetric

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

We observe that if π_X, π_Y are:

- Unimodal
- Symmetric

then m_Z is the mass of a possibility distribution.

If
$$Z = f(X, Y)$$
 then $m_Z(z) = \sum_{z=f(x,y)} m_{XY}(x,y)$

We observe that if π_X, π_Y are:

- Unimodal
- Symmetric

then m_Z is the mass of a possibility distribution.

Useful to boost computation

Monte Carlo sampling allows to estimate $\mathcal{M}_{\textit{robust}}$ and compare it to $\mathcal{M}_{\textit{mass}}$

Monte Carlo sampling allows to estimate $\mathcal{M}_{\textit{robust}}$ and compare it to $\mathcal{M}_{\textit{mass}}$

Monte Carlo sampling allows to estimate $\mathcal{M}_{\textit{robust}}$ and compare it to $\mathcal{M}_{\textit{mass}}$

References I

Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., and Fardet, Q. (2020). GROUND TRUTH GENERATION AND DISPARITY ESTIMATION FOR OPTICAL SATELLITE IMAGERY.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020:127–134.

 Ferson, S., Oberkampf, W., Tucker, W., Zhang, J., Ginzburg, L., Berleant, D., Hajagos, J., and Nelsen, R. (2004).
Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis.

Technical Report SAND2004-3072, 919189.

Sklar, M. (1959).

Fonctions de Répartition À N Dimensions Et Leurs Marges. Université Paris 8.

- Youssefi, D., Michel, J., Sarrazin, E., Buffe, F., Cournet, M., Delvit, J.-M., L'Helguen, C., Melet, O., Emilien, A., and Bosman, J. (2020).
 - Cars: A photogrammetry pipeline using dask graphs to construct a global 3d model.
 - In *IGARSS 2020 2020 IEEE International Geoscience and Remote Sensing Symposium*, pages 453–456.