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@ Uncertainty on the input images

e Caracterizing the uncertainty of the output height map
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Stereo-matching
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Stereo-matching

Figure: Cost function [Cournet et al., 2020]

2/11



Cost between two patches
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Cost between two patches
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Uncertainty sources

Sources of uncertainty:
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Uncertainty sources

Sources of uncertainty:
@ Noise on the sensor
@ Pre-processing (resampling)

@ Integer quantification

We use possibility distributions as
our uncertainty models Wloome

2 1 nx +2
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Uncertainty on the images

69 | 52 | 123 58 | 151 | 185
58 | 85 | 174 99 | 180 | 176
62 | 135 | 181 157 | 183 | 175
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Uncertainty on the images
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We use copulas as aggregation models, using Sklar’s theorem

Theorem ([Sklar, 1959])

Every multivariate CDF F can be expressed in terms of its
marginals F;(x;) = P(X; < x;) and a unique copula C:
F(x1,...,xn) = C(F1(x1), ..., Fa(xn))

Ideally, we would like to know
Mobust = {Pxy | Fxy = C(Fx, Fy)}

with Fx € M(?Tx), Fy € ./\/l(ﬂ'y)

This set is hard to compute.
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Applying copulas to belief functions

Another approach is to apply the copula to the mass functions
[Ferson et al., 2004]:

mxy(A, B) = AC(D>  mx(a), Y my(b))

a<A b<B

with AC being the H-Volume of the copula C
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Applying copulas to belief functions

Another approach is to apply the copula to the mass functions
[Ferson et al., 2004]:

mxy(A, B) = AC(D>  mx(a), Y my(b))

a<A b<B

with AC being the H-Volume of the copula C
The joint credal set is:

Mmass = {'D ‘ P> BeIXY}

Can M a5 be an (outer) approximation of M opyst?
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Joint possibility distirbution

If Z = f(X, Y) then mZ(Z) = ZZ:f(X,y) mXY(X,_)/)

There is no guarantee that mz is the mass associated to a
possibility distribution

We observe that if wx, 7y are:
@ Unimodal
@ Symmetric

then myz is the mass of a possibility distribution.

Useful to boost computation
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Monte Carlo

Monte Carlo sampling allows to estimate M, p,s: and compare it
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