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CNES CO3D mission

Figure: CARS 3D pipeline [Youssefi et al., 2020]

Uncertainty on the input images

Caracterizing the uncertainty of the output height map
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Stereo-matching

Figure: Cost function [Cournet et al., 2020]
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Stereo-matching

Figure: Cost function [Cournet et al., 2020]
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Uncertainty sources

Sources of uncertainty:

Noise on the sensor

Pre-processing (resampling)

Integer quantification

We use possibility distributions as
our uncertainty models
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Uncertainty on the images
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Robust approach

We use copulas as aggregation models, using Sklar’s theorem

Theorem ([Sklar, 1959])

Every multivariate CDF F can be expressed in terms of its
marginals Fi (xi ) = P(Xi ⩽ xi ) and a unique copula C:
F (x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn))

Ideally, we would like to know

Mrobust = {PXY | FXY = C (FX ,FY )}

with FX ∈ M(πX ),FY ∈ M(πY )

This set is hard to compute.
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Applying copulas to belief functions

Another approach is to apply the copula to the mass functions
[Ferson et al., 2004]:

mXY (A,B) = ∆C (
∑
a⩽A

mX (a),
∑
b⩽B

mY (b))

with ∆C being the H-Volume of the copula C

The joint credal set is:

Mmass = {P | P ⩾ BelXY }

Can Mmass be an (outer) approximation of Mrobust?
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Joint possibility distirbution

If Z = f (X ,Y ) then mZ (z) =
∑

z=f (x ,y)mXY (x , y)

There is no guarantee that mZ is the mass associated to a
possibility distribution

We observe that if πX , πY are:

Unimodal

Symmetric

then mZ is the mass of a possibility distribution.

Useful to boost computation
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Monte Carlo

Monte Carlo sampling allows to estimate Mrobust and compare it
to Mmass

9/11



Monte Carlo

Monte Carlo sampling allows to estimate Mrobust and compare it
to Mmass

9/11



Monte Carlo

Monte Carlo sampling allows to estimate Mrobust and compare it
to Mmass

9/11



References I

Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J.,
Youssefi, D., Defonte, V., and Fardet, Q. (2020).
GROUND TRUTH GENERATION AND DISPARITY
ESTIMATION FOR OPTICAL SATELLITE IMAGERY.
The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences,
XLIII-B2-2020:127–134.

Ferson, S., Oberkampf, W., Tucker, W., Zhang, J., Ginzburg,
L., Berleant, D., Hajagos, J., and Nelsen, R. (2004).
Dependence in probabilistic modeling, Dempster-Shafer theory,
and probability bounds analysis.
Technical Report SAND2004-3072, 919189.

Sklar, M. (1959).
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