

Learning Calibrated Belief Functions from Conformal Predictions

Vitor Martin Bordini, Sébastien Destercke and Benjamin Quost

Heudiasyc lab

July 11, 2023

Plan

• Introduction

• Our approach

Probability Prediction Decision

Probability Prediction Decision

Probability Prediction Decision

Conclusion : Number itself is also important.

Learning Calibrated Belief Functions from Conformal Predictions

Problem

- Models tend do be ill-calibrated.
- Result doesn't reflect reality.

Learning Calibrated Belief Functions from Conformal Predictions

•
$$h(x) = \hat{P}(y = 1).$$

- One formal definition : $P(y = 1 | h(x) = \alpha) = \alpha$.
- Does our model probability reflect the real one?
- A way to get it : Inductive Conformal Prediction (ICP)

Downsides of ICP

- We need a calibration set \mathcal{D}_{cal} .
- Inference time not compatible with real-time applications.

Questions

- What is the bridge between ICP and Imprecise Probability? (Belief Functions)
- How to solve ICP downsides? (Learn a model)

Learning Calibrated Belief Functions from Conformal Predictions

Plan

• Introduction

• Our approach

1. Make conformal predictions from a model.

- 1. Make conformal predictions from a model.
- 2. It is proven that ICP output p is equal to a possibility distribution π .

- 1. Make conformal predictions from a model.
- 2. It is proven that ICP output p is equal to a possibility distribution π .
- 3. Normalise π into π^* so max $\pi^* = 1$.

- 1. Make conformal predictions from a model.
- 2. It is proven that ICP output p is equal to a possibility distribution π .
- 3. Normalise π into π^* so max $\pi^* = 1$.
- 4. $Bel(A) := N(A) = 1 max_{x \in \neg A}\pi^*(x), \forall A \subseteq \Omega.$

How to overcome calibration weakness?

• Calibration requires some data and time.

How to overcome calibration weakness?

- Calibration requires some data and time.
- Train a model from calibrated outputs.

Learning ICP output

- Train a probabilistic model.
- Do a conformal prediction on every sample.
- Train a regressor.

