No-Arbitrage Pricing with α -DS Mixtures in a Market with Bid-Ask Spreads

^aDavide Petturiti ^bBarbara Vantaggi

^aDept. Economics, University of Perugia, Italy ^bDept. MEMOTEF, Sapienza University of Rome, Italy

> **ISIPTA 2023** Oviedo, Spain – July 11-14, 2023

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Our group and main active projects

Sergio Bianchi

Andrea Capotorti Francesca Giuseppe Pitolli Sanfilippo

Gabriele Stabile

Domenico Vitulano

Lvdia Castronovo

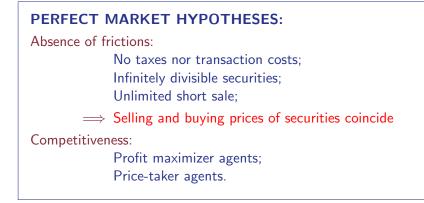
Andrea Cinfrignini

Silvia Lorenzini

- NRRP project: "Future Artificial Intelligence Research"
- PRIN project: "Models for dynamic reasoning under partial knowledge to make interpretable decisions"

Frezza

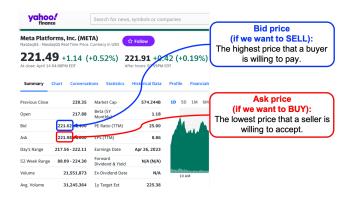
Classical "ideal" financial market



Classical no-arbitrage principle

Prices can be expressed as **discounted expectations** with respect to an "artificial" probability measure Q.

Is the absence of frictions hypothesis realistic?



OUR GOAL: Replace *Q* with a non-additive measure so as to consider bid-ask spreads.

α -DS mixtures

Consider:

- $\Omega = \{1, \ldots, n\}$ with $n \geq 1$, a finite set of states of the world
- $\mathcal{P}(\Omega)$, power set of events

Definition

Let $\alpha \in [0,1]$. A mapping $\varphi_{\alpha} : \mathcal{P}(\Omega) \to [0,1]$ is called an α -DS mixture if there exists a belief function $Bel : \mathcal{P}(\Omega) \to [0,1]$ with dual plausibility function Pl such that, for all $A \in \mathcal{P}(\Omega)$,

$$\begin{aligned} \varphi_{\alpha}(A) &= \alpha Bel(A) + (1 - \alpha) Pl(A) \\ &= \alpha Bel(A) + (1 - \alpha) (1 - Bel(A^{c})) \end{aligned}$$

The belief function *Bel* is said to **represent** the α -DS mixture φ_{α} .

 \implies The representation is unique when $\alpha \neq \frac{1}{2}$

$\alpha\text{-}\mathsf{DS}$ mixture Choquet expectation

Every φ_{α} uniquely extends to a functional $\mathbb{C}_{\varphi_{\alpha}} : \mathbb{R}^{\Omega} \to \mathbb{R}$ by setting, for every $X \in \mathbb{R}^{\Omega}$,

$$\mathbb{C}_{\varphi_{\alpha}}[X] = \oint X \, \mathrm{d}\varphi_{\alpha}$$

Hurwicz-like representation:

$$\mathbb{C}_{\varphi_{\alpha}}[X] = \alpha \min_{P \in \mathcal{C}_{Bel}} \mathbb{E}_{P}[X] + (1 - \alpha) \max_{P \in \mathcal{C}_{Bel}} \mathbb{E}_{P}[X]$$

where \mathcal{C}_{Bel} is the core of Bel

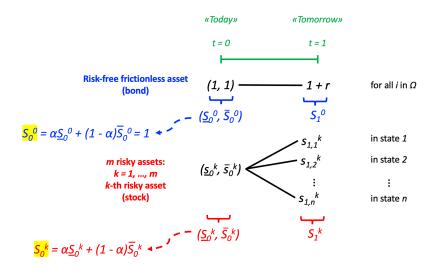
Möbius-like representation:

$$\mathbb{C}_{\varphi_{\alpha}}[X] = \sum_{B \in \mathcal{U}} \llbracket X \rrbracket^{\alpha}(B) \mu(B)$$

where μ is the Möbius inverse of Bel and

 $\mathcal{U} = \mathcal{P}(\Omega) \setminus \{\emptyset\} \text{ and } \llbracket X \rrbracket^{\alpha}(B) = \alpha \min_{i \in B} X(i) + (1 - \alpha) \max_{i \in B} X(i)$

One-period market with bid-ask spreads



No-arbitrage pricing under α -PRU

Given a portfolio $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^{m+1}$ we define: Price at time t = 0: $V_0^{\lambda} = \lambda_0 + \sum_{k=1}^m \lambda_k S_0^k$

Payoff under α -PRU at time t = 1: $V_1^{\lambda} = \lambda_0(1+r) + \sum_{k=1}^m \lambda_k \llbracket S_1^k \rrbracket^{\alpha}$

α -PRU principle at time t = 1

PRU (Partially Resolving Uncertainty) due to Jaffray: An agent may only acquire that $B \neq \emptyset$ occurs, without knowing which is the true $i \in B$

 α -pessimism: An agent always considers the α -mixture between the minimum and the maximum of random payoffs on every $B \neq \emptyset$

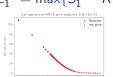
First and Second FTAP under α -PRU

Theorem (First FTAP under α -PRU)

Let $\alpha \in [0, 1]$. The following conditions are equivalent: (i) there exists an α -DS mixture $\widehat{\varphi_{\alpha}}$ represented by a belief function strictly positive on \mathcal{U} and such that $\frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[S_{1}^{k}]}{1+r} = S_{0}^{k}$, for $k = 1, \ldots, m$ (ii) for every $\lambda \in \mathbb{R}^{m+1}$ none of the following conditions holds: (a) $V_0^{\lambda} < 0$ and $V_1^{\lambda} \ge 0$ and $V_1^{\lambda}(\{i\}) = 0$, for all i; we are paid today in all events we do not lose money and have a null gain on states tomorrow (b) $V_0^{\lambda} \leq 0$ and $V_1^{\lambda} \geq 0$ with $V_1^{\lambda}(\{i\}) > 0$ for some i. we do not pay today in all events we do not lose money and have a positive gain in a state tomorrow

 $\implies \text{The Second FTAP under } \alpha \text{-PRU gives a sufficient condition} \\ (\alpha \text{-PRU completeness}) \text{ for uniqueness of } \widehat{\varphi_{\alpha}}$

META stock market data with bid-ask spreads

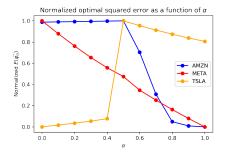


Tuning of α : a measure of market pessimism

Goal

For a fixed $\alpha \in [0, 1]$, look for $\widehat{\varphi_{\alpha}}$ minimizing

$$E(\widehat{\varphi_{\alpha}}) = \sum_{K \in \mathcal{K}_{call}} \left(C_{0}^{K,\alpha} - \frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[C_{1}^{K}]}{1+r} \right)^{2} + \sum_{K \in \mathcal{K}_{put}} \left(P_{0}^{K,\alpha} - \frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[P_{1}^{K}]}{1+r} \right)^{2}$$



Thanks for your attention!

Our poster

