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Pseudo-Label Selection...

Intro: What’s Pseudo-Labeling?

Semi-Supervised Learning (Classification)

Consider labeled data
D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1

and unlabeled data
U = {(𝑥𝑖 ,Y)}𝑚𝑖=𝑛+1

from the same data generating process, where X is the feature space
and Y is the categorical target space

Aim: Use unlabeled data for training
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Pseudo-Label Selection...

Pseudo-Labeling
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Figure: Sketch of Pseudo-Labeling for Binary Classification.
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Pseudo-Label Selection...

Pseudo-Labeling

Standard Pseudo-Labeling1

while stopping criterion not met do
fit model on labeled data D to obtain prediction function 𝑦(𝑥)
for 𝑖 ∈ {1, . . . , |U |} do

predict Y ∋ 𝑦𝑖 = 𝑦(𝑥𝑖) with 𝑥𝑖 from (𝑥𝑖 ,Y) in U

compute some selection criterion 𝑐(𝑥𝑖 , 𝑦𝑖)
end
obtain 𝑖∗ = argmax𝑖 𝑐(𝑥𝑖 , 𝑦𝑖)
add (𝑥𝑖∗ , 𝑦𝑖∗) to labeled data: D ← D ∪ (𝑥𝑖 , 𝑦𝑖)
update U← U \ (𝑥𝑖 ,Y)𝑖

end

1Other names: Self-Training, Self-Labeling.
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... Is a Decision Problem ...

PLS Is a Decision Problem

Definition (PLS as Decision Problem)

Consider the decision-theoretic triple (AU,Θ, 𝑢(·)) with
an action space AU of unlabeled data to be selected,

a space of unknown states of nature (parameters) Θ

and a utility function 𝑢 : AU × Θ→ R.

Notably, this decision-theoretic embedding entails optimistic superset
learning as special case corresponding to max-max-actions (Hüllermeier,
Destercke, and Couso 2019; Rodemann, Kreiss, Hüllermeier, and Augustin
2022)
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... With Bayes-Optimal Actions ...

Bayesian(,) PL(ea)S(e!)

Proposition (Rodemann, Goschenhofer, Dorigatti, Nagler, and
Augustin 2023)

In the decision problem (AU,Θ, 𝑢(·)) with pseudo-label likelihood
𝑢 := 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | \) as utility and an updated prior 𝜋(\) = 𝑝(\ | D) on
Θ, the standard Bayes criterion

Φ(·, 𝜋) : AU → R
𝑎 ↦→ Φ(𝑎, 𝜋) = E𝜋 (𝑢(𝑎, ·))

corresponds to the pseudo posterior predictive 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D).
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... With Bayes-Optimal Actions ...

Bayesian(,) PL(ea)S(e!)

Proposition (tl;dr)

Our Bayes criterion is the pseudo posterior predictive (PPP)
𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D) if the likelihood 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | \) is our utility.
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... With Bayes-Optimal Actions ...

Bayesian(,) PL(ea)S(e!)

Problem: 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D) is expensive to evaluate! −→ Approximate it
(Rodemann, Goschenhofer, Dorigatti, Nagler, and Augustin 2023)

𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D) ≈ ℓD∪(𝑥𝑖 ,𝑦𝑖 ) (\̃)︸          ︷︷          ︸
Likelihood of pseudo-sample
in light of fitted parameter

−1
2
log |𝐼 (\̃) |︸          ︷︷          ︸

Flatness of likelihood
at this fitted parameter︸                                                  ︷︷                                                  ︸

uninformative case

+ log 𝜋(\̃),︸       ︷︷       ︸
Prior at fitted
parameter

where \̃ ≈ argmax\ ℓD∪(𝑥𝑖 ,𝑦𝑖 ) (\)
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... That Can Be Robustified ...

In all Likelihoods: Robust PLS by multi-objective utility

Definition (Multi-Objective Likelihood Utility)

Consider labeled data D and pseudo-labels 𝑦 ∈ Y from 𝑦 : X → Y as
given. The 𝐾-dimensional utility function

𝑢 : AU × Θ̃→ R𝐾

((𝑥𝑖 ,Y), \) ↦→ (ℓ(𝑖, 1), . . . , ℓ(𝑖, 𝐾))′

shall be called multi-objective likelihood.
For instance, with any 𝑀1, . . . , 𝑀𝐾 , 𝐾 < ∞, different parametric models
specified on respective parameter spaces Θ1, . . . ,Θ𝐾

2 we can set
ℓ(𝑖, 𝑘) := 𝑝(𝑖 | 𝑓𝑘 (\), 𝑀𝑘) = 𝑝(D ∪ (𝑧, 𝑦(𝑧)) | 𝑓𝑘 (\), 𝑀𝑘) with \𝑘 ∈ Θ𝑘 .

2Further denote by Θ̃ = ×𝐾
𝑘=1

Θ𝑘 their Cartesian product and by 𝑓𝑘 : Θ̃→ Θ𝑘 ,
𝑘 ∈ {1, . . . , 𝐾} the projections from the Cartesian product to each Θ𝑘 .
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... That Can Be Robustified ... ... Not Using Second-Order Information

Generalized Stochastic Dominance

Embed the multi-objective utility into a preference system A (Jansen,
Schollmeyer, and Augustin 2018)

Denote by NA the set of all representations 𝜙 of A and define a
preorder on the pseudo-labeled data AU by setting 𝑎1 ≿𝜋 𝑎2 iff

∀𝜙 : E𝜋 (𝜙 ◦ 𝑢(𝑎1, ·)) ≥ E𝜋 (𝜙 ◦ 𝑢(𝑎2, ·))

Then select all pseudo-labeled data in AU that are undominated
w.r.t. ≿𝜋
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... That Can Be Robustified ... ... Not Using Second-Order Information

Generalized Stochastic Dominance

Good News: Under credal prior info Π we can generalize ≿𝜋 to ≿Π by
setting

𝑎1 ≿Π 𝑎2 : iff ∀𝜋 ∈ Π : 𝑎1 ≿𝜋 𝑎2

and select all pseudo-labeled data in AU that are undominated
w.r.t. ≿Π

The relations ≿𝜋 and ≿Π are referred to as Generalized Stochastic
Dominance (GSD) (Jansen, Schollmeyer, Blocher, Rodemann, and
Augustin 2023)
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... That Can Be Robustified ... ... Not Using Second-Order Information

Regret-Based Updating Rule

By design, PLS relies on initial model fit

If the initial model generalizes poorly, initial misconceptions can
propagate throughout the process (Arazo, Ortego, Albert, O’Connor,
and McGuinness 2020)

Main reasons: model misspecification and/or erroneous label
predictions

Accordingly, we strive for a PLS criterion that is robust with respect
to these regrets
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... That Can Be Robustified ... ... Not Using Second-Order Information

Regret-Based Updating Rule

We adapt the 𝛼-cut updating rule by (Cattaneo 2014) such that the
posterior credal set is

Π𝛼 = {𝜋 ∈ Π | 𝑚(ℓℎ,ℎ, 𝜋) ≥ 𝛼 · sup
𝑗 ,𝑘

𝑚(ℓ 𝑗 ,𝑘 , 𝜋)}

with Π a prior credal set, 𝑚(ℓ, 𝜋) =
∫
Θ
ℓ(\)𝜋(\)𝑑\ the marginal likelihood,

𝑗 ∈ {1, . . . , 𝐽} for 𝐽 = |Y| labels, and 𝑘 ∈ {1, . . . , 𝐾} for models
𝑀1, . . . , 𝑀𝐾 . Denote by 𝑢 𝑗 ,𝑘 (\, 𝑎∗) the utility of 𝑎∗=̂ 𝑖∗ with prediction
𝑦𝑖∗, 𝑗 under model 𝑀𝑘 .
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... That Can Be Robustified ... ... Not Using Second-Order Information

Regret-Based Updating Rule

Defining

𝑟 (\, 𝑎∗) =
sup 𝑗 ,𝑘 𝑢 𝑗 ,𝑘 (\, 𝑎∗)

𝑢ℎ,ℎ (\, 𝑎∗)
as the myopic regret, we get

Proposition (Myopic Regret-Guarantee of 𝛼-Cuts)

Bayes-optimal selections 𝑎∗ of pseudo-labeled data under the above 𝛼-cut
updating rule have expected total regret E𝜋 (𝑟 (\, 𝑎∗)) ≤ 1

𝛼
for any

posterior 𝜋 ∈ Π𝛼.
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Why You Should Visit Our Poster (1)

Figure: How does this all relate to Occam’s razor?
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Why You Should Visit Our Poster

Why You Should Visit Our Poster (2)

Figure: How does this work in practice?
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