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Core research interest:
better models for data in ML
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Data is Imperfect

- Corruptions
= Missing data
= Dataset shift

= Data about people

- Ethical concerns such as fairness!

- Society in non-equilibrium



Core research interest:
better models for data in ML

Data is Imperfect 4 The standard I1.1.d. assumption
= Corruptions | = The utopia of independent and identically
distributed data

= Missing data

= Just one representative example:

= Dataset shift

We consider xuper\ ised learning w |th a rlsk -averse learner. The learner has a data set wmpnsed of
i.i.d. samples from an unknown dist n, i.e., D= {(z1,41),-..(@N,yn)} € (X x )N ~ DV,
- Data abOUt people and her goui is to learn a function hg : X — R that is par: lmemzed by 8 € © C R% The

- Ethical concerns such as fairness! [Curiet al., 2020]

- Society in non-equilibrium
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= Theoretical criticism: holds on a set of sequences with Lebesgue measure 1..not for
all sequences.

- Different ways of measuring the size of this set yield different answers!



The conceptual culprit:
The law of large numbers
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= LetX;,X,,..bei.i.d. random variables with finite expectation E[X], then the
sample average converges almost surely to the expectation

, n
1
P(lim —in > E[X]) =
n—>ooni:1

= Theoretical criticism: holds on a set of sequences with Lebesgue measure 1..not for
all sequences.

- Different ways of measuring the size of this set yield different answers!

= Serves to justify the hypothesis of statistical stability [Gorban, 2017]: that relative frequencies
tend to stabilize in the long run



Challenges to statistical stability
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= From machine Iearning- daté'éet shift etc.

+ Many interesting examples for instability
- [Gorban, 2017]

= Mains voltage in a city
- Earth’s magnetic field




Our aim:

Find a principled way to model statistically unstable phenomena
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TOWARDS A FREQUENTIST THEORY OF UPPER AND LOWER
PROBABILITY

By PETER WALLEY' AND TERRENCE L. FIN
Cornell University and Bell Laboratories; and Cornell University

We present elements of a frequentist theory of statistics for concepts of
upper and lower (interval-valued) probability (IVP), defined on finite event
algebras. We consider 1ID models for unlinked ons of experiments
described by IVP and suggest several generalizati of standard notions of
independence, asymptotic certainty and estim: of relative

s is favoured under our IID models. Moreover,
Theorem give some justification for the estimation of an underlying
IVP mechai n from fluctuations of relative frequel Our results indicate
ncy- or propensity-oriented, view of probability does
e probability concept, and that IVP models can

1.1 Objectives and background. We present here a frequentist account of upper and
lower (interval-valued) probabilities (IVP). Our results parallel, sometimes with notewor-
thy differences, the elements of the familiar frequentist account of the usual additive
numerical probability (NP) concept, and they provide the rudiments of a frequentist
theory of statis for IVP. Although we concentrate on frequentist notions in this paper,
our philosophical position does not restrict us to just frequentist views of probability. We
accept some subjective and epistemic views of probability as well (see Fine, 1981).

By IVP we refer to a pair of functions taking their values in the unit interval, called the
lower (P) and upper (P) probabilities, that are defined on an event algebra </ and y

Section 2. The lower probability P is superadditive, P is subadditive,

ction 2 also contains elementary consequences of

the axioms as well as definitions of important subclasses of lower and upper probabilities,
notably upper and lower envelopes, to which most of our results refer.

Of particular note is the fact that the IVP concepts we consider have instances that are
not compatible with the usual NP concept satisfying Kolmogorov’s axioms; if

(3A € #)P(A) > P(A),

V.1.lvanenko

Decision Systems
and Nonstochastic
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A strictly Frequentist approach

e —————

Take the notion of a sequence as the primitive
— In the spirit of von Mises and Ivanenko
- Start with the data!

Assume an arbitrary possibility set (0 and L* = {X: Q — R: sup|X(w)| < oo}
wEeE)

Assume a sequence (L : N — () of elementary outcomes

Forany event A C (), consider the limiting relative frequency:
2 .
=2 2
P(A) = lim = x,(2°(0)
=T

But the limit may or may not exist! Relative frequencies could diverge.
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Cluster points -> coherent upper prevision
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= Define a sequence of linear previsions as:

e 1%
Ee(n) =X E;X(Q_)(i))' X eL”



Cluster points -> coherent upper prevision

et = - —

= Define a sequence of linear previsions as:
: . =
S 1 _
Eon) =X+ Ez X(0@®), XelL”
i=1

= From this, induce coherent upper prevision:

R(X) :==sup{E(X):E € CP(E )}, X€eL®

- Where CP(-) is the set of cluster points with respect to the weak* topology on the dual of L*
- This set is guaranteed to be non-empty!
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= Define a sequence of linear previsions as:
.. ‘ n
S 1 _
Eon) =X+ Ez X(0@®), XelL”
i=1

= From this, induce coherent upper prevision:

R(X) :==sup{E(X):E € CP(E )}, X€eL®

- Where CP(-) is the set of cluster points with respect to the weak* topology on the dual of L*
- This set is guaranteed to be non-empty!

= Proposition: R(X) = lim sup%Z{LlX(Q_)(i))

n — oo

Limit/s to Expectation -
as
Cluster Points to Upper Prevision



Take-away:

Even if “the” probability does not exist, we always have a coherent upper prevision.
Also: can recover the generalized Bayes rule and formulate independence.
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The converse direction
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= Theorem: for finite () and arbitrary coherent upper prevision R on (), can always
“construct a corresponding sequence (17 (such that (0 induces R)

» Proof is constructive!
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The converse direction
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= Theorem: for finite () and arbitrary coherent upper prevision R on (), can always
construct a corresponding sequence (17 (such that (L induces R)

» Proof is constructive!

=> Strictly frequentist re-interpretation of subjective upper previsions.
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Future Directions - What to do in practice?

The finite data setting

Need randomness assumptions

Connections to game-theoretic
randomness?

How is this related to work of Fierens,
Régo and Fine?

- “Afrequentist understanding of sets of measures”
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