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Core research interest:
better models for data in ML

Data is Imperfect

▪ Corruptions

▪ Missing data

▪ Dataset shift

▪ Data about people 
– Ethical concerns such as fairness!

– Society in non-equilibrium
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▪ Corruptions

▪ Missing data

▪ Dataset shift

▪ Data about people 
– Ethical concerns such as fairness!

– Society in non-equilibrium

The standard i.i.d. assumption
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▪ The utopia of independent and identically 
distributed data

▪ Just one representative example:

[Curi et al., 2020]



The conceptual culprit:
The law of large numbers 
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▪ Let 𝑋1, 𝑋2, . . be i.i.d. random variables with finite expectation 𝐸[𝑋], then the 
sample average converges almost surely to the expectation

𝑃 lim
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▪ Theoretical criticism: holds on a set of sequences with Lebesgue measure 1..not for 
all sequences.
– Different ways of measuring the size of this set yield different answers! 
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▪ Theoretical criticism: holds on a set of sequences with Lebesgue measure 1..not for 
all sequences.
– Different ways of measuring the size of this set yield different answers! 

▪ Serves to justify the hypothesis of statistical stability [Gorban, 2017]: that relative frequencies 
tend to stabilize in the long run



Challenges to statistical stability

▪ From machine learning: dataset shift etc.

▪ Many interesting examples for instability 
[Gorban, 2017]
– Mains voltage in a city

– Earth’s magnetic field

– …

5



Our aim:

Find a principled way to model statistically unstable phenomena
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Tying together threads from von Mises, Walley & Fine, and Ivanenko
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How:



A strictly frequentist approach
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A strictly frequentist approach

▪ Take the notion of a sequence as the primitive
– In the spirit of von Mises and Ivanenko

– Start with the data!
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A strictly frequentist approach

▪ Take the notion of a sequence as the primitive
– In the spirit of von Mises and Ivanenko

– Start with the data!

▪ Assume an arbitrary possibility set Ω and 𝐿∞ = {𝑋: Ω → ℝ: sup
𝜔∈Ω

𝑋 𝜔 < ∞}

▪ Assume a sequence Ω→: ℕ → Ω of elementary outcomes

▪ For any event 𝐴 ⊆ Ω, consider the limiting relative frequency:

𝑃 𝐴 ≔ lim
𝑛→∞

1

𝑛


𝑖=1

𝑛

𝜒𝐴 Ω→ 𝑖

 But the limit may or may not exist! Relative frequencies could diverge.
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Cluster points -> coherent upper prevision
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Cluster points -> coherent upper prevision

▪ Define a sequence of linear previsions as:

𝐸→ 𝑛 ≔ 𝑋 ↦
1

𝑛


𝑖=1
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𝑋 Ω→ 𝑖 , 𝑋 ∈ 𝐿∞
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𝐸→ 𝑛 ≔ 𝑋 ↦
1

𝑛


𝑖=1

𝑛

𝑋 Ω→ 𝑖 , 𝑋 ∈ 𝐿∞

▪ From this, induce coherent upper prevision:

ത𝑅 𝑋 ≔ sup 𝐸 𝑋 : 𝐸 ∈ CP 𝐸→ , 𝑋 ∈ 𝐿∞

– Where CP(⋅) is the set of cluster points with respect to the weak* topology on the dual of 𝐿∞

– This set is guaranteed to be non-empty!
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▪ Define a sequence of linear previsions as:

𝐸→ 𝑛 ≔ 𝑋 ↦
1

𝑛


𝑖=1

𝑛

𝑋 Ω→ 𝑖 , 𝑋 ∈ 𝐿∞

▪ From this, induce coherent upper prevision:

ത𝑅 𝑋 ≔ sup 𝐸 𝑋 : 𝐸 ∈ CP 𝐸→ , 𝑋 ∈ 𝐿∞

– Where CP(⋅) is the set of cluster points with respect to the weak* topology on the dual of 𝐿∞

– This set is guaranteed to be non-empty!

▪ Proposition:  ത𝑅 𝑋 = lim sup
1

𝑛
σ𝑖=1

𝑛 𝑋 Ω→ 𝑖
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𝑛 → ∞ Limit is to Expectation
 as
Cluster Points to Upper Prevision



Take-away:

Even if “the” probability does not exist, we always have a coherent upper prevision.

Also: can recover the generalized Bayes rule and formulate independence.
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The converse direction

▪ Theorem: for finite  Ω and arbitrary coherent upper prevision ത𝑅 on Ω, can always 
construct a corresponding sequence Ω→(such that Ω→ induces ത𝑅)

▪ Proof is constructive!
 

11
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▪ Theorem: for finite  Ω and arbitrary coherent upper prevision ത𝑅 on Ω, can always 
construct a corresponding sequence Ω→(such that Ω→ induces ത𝑅)

▪ Proof is constructive!
 

 => Strictly frequentist re-interpretation of subjective upper previsions.
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Future Directions – What to do in practice?

The finite data setting

▪ Need randomness assumptions

▪ Connections to game-theoretic 
randomness?

▪ How is this related to work of Fierens, 
Rêgo and Fine?
– “A frequentist understanding of sets of measures”
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Come visit our poster ☺

Happy to chat about machine 
learning and IP
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