
Representing Suppositional Decision 
Theories with Sets of Desirable 
Gambles

Motivating Example: Extortion

Act-State Dependence
𝒳: the set of states of the world over which the agent doesn’t have direct control; exactly one 𝑋 ∈
𝒳 is true at the actual world. 
𝒜: the set of acts; our agent will choose exactly one 𝐴 ∈ 𝒜.

Total outcome space: Ω ⊆ 𝒳×𝒜. If acts and states are logically independent (any act-state pair is 
logically possible), Ω = 𝒳×𝒜. We assume 𝒳 and 𝒜 are finite.  

𝑢: 	Ω → ℝ; we assume the agent has a utility function directly over total outcomes, indicating all 
preferences relevant to the decision. (In Extortion, the table above.)

Need a decision rule sensitive to the fact that the agent’s beliefs about which state will obtain may 
be affected by their choice of act. 

Suppositional Decision Theories
Well-studied in philosophy, but almost exclusively in a precise context. 

Basic idea: evaluate an act 𝐴 from the epistemic perspective of “supposing” 𝐴 is the act you perform. Calculate the expected 
utility of each act from its perspective, choose whichever act maximizes suppositional expected utility.

Supposition rule: 𝑠: ℙ×𝒫¬∅ Ω → ℙ. 𝑠(𝑝, 𝑅) maps a pair of probability function on Ω (interpretation: agent’s precise prior) 
and nonempty event 𝑅 (the supposed event) to a new probability function. One constraint: 𝑠 𝑝, 𝑅 𝜔 = 0 for any 𝜔 ∉ 𝑅; 
supposition involves certainty in the supposed event. Otherwise, different 𝑠 can represent a wide array of policies 
concerning how supposing 𝑅 impacts other beliefs. 

Choose the act which maximizes 𝑉# 𝑝, 𝑢,⋅ = 𝐸# $,⋅ 𝑢 = ∑'∈)𝑠 𝑝,⋅ 𝜔 𝑢 𝜔 .

E.g.: Bayesian conditionalization yields Richard Jeffrey’s Evidential Decision Theory (EDT). We can also represent various 
Causal Decision Theories in this formalism and some more exotic decision theories, like Functional Decision Theory.

Special Case: Generalized Imaging
Let 𝑓:𝒫¬∅ Ω ×Ω → ℙ; we also require 𝑓 𝑅,𝜔 𝜔* = 0 for any 𝜔* ∉ 𝑅. This is a “general imaging function.” It’s difficult to 
say much about their interpretation outside of particular decision theories.

We say a supposition rule is representable by generalized imaging when there’s a general imaging function 𝑓 such that
𝑠 𝑝, 𝑅 ⋅ = ∑'∈)𝑝 𝜔 𝑓 𝜔,𝑅 ⋅ ,	for every 𝑝 ∈ ℙ and every 𝑅 ∈ 𝒫¬∅ Ω .

In the paper, we often only care whether supposition of acts is representable by generalized imaging.

Many versions of CDT supposition rules are representable by generalized imaging (including Pearl’s do-operator); in this 
context, 𝑓 𝑅,𝜔 (𝜔*) can be interpreted as a counterfactual probability: if the actual world is 𝜔, the probability that 𝜔′ 
would (have) result(ed) from a causal intervention to make 𝑅 obtain. 

Bridge Type 1
Maintain conditions 2-4, but use different characteristic gambles. This kind of representation is 
possible iff supposition of acts is representable by generalized imaging.
 

1. Each act 𝐴 ∈ 𝒜 has a characteristic gamble 𝑔+ 𝜔 = ∑'!∈)𝑓 𝐴,𝜔* 𝜔 𝑢 𝜔 .
2. Link between 𝐷 and 𝑃: 𝑔 ∈ 𝐷 iff ∀𝑝 ∈ 𝑃 𝐸$ 𝑔 > 0 .
3. Read act preferences from gamble desirability: 𝐴 ≻ 𝐵 iff 𝑔+ −𝑔, ∈ 𝐷.
4. Act pricing: agent will pay 𝜖 for 𝐴 iff 𝑔+ − 𝜖 ∈ 𝐷; agent will sell 𝐴 for 𝜖 iff 𝜖 − 𝑔+ ∈ 𝐷.

Bridge Type 2
Use natural analogue of condition 1; maintain condition 3; use “effective” (fake) credal set for condition 2: 
𝑃-.. = 𝑞 ∈ ℙ: ∃𝑝 ∈ 𝑃 ∀𝐴 ∈ 𝒜,𝑋 ∈ 𝒳 𝑞 𝐴,𝑋 = # $,+ +,/

𝒜 ; different (I think more intuitive than Type 1) act pricing.

Suppose you have just parked in a seedy neighborhood when a man approaches and offers to “protect” your car from harm for 
$10. You recognize this as extortion and have heard that people who refuse “protection” invariably return to find their 
windshields smashed. Those who pay find their cars intact. You cannot park anywhere else because you are late for an important 
meeting. It costs $400 to replace a windshield. Should you buy “protection”? (example from James Joyce)

There seems to be a dominance argument against Paying: your windshield will either be Broken or 
Unbroken. In either case, Don’t Pay provides strictly more value than Pay. … But this is silly.

Diagnosis: whether your windshield will be Broken or not depends on which act you perform. 

Imprecise SDTs and SDGs
Assume the agent has an imprecise prior 𝑃 ⊆ ℙ. 
𝐴 ≻ 𝐵 iff ∀𝑝 ∈ 𝑃 𝑉# 𝑝, 𝑢, 𝐴 > 𝑉# 𝑝, 𝑢, 𝐵 .
Another obvious generalization (considered in the paper) would be to allow for imprecision about 
𝑠, too.

A common decision rule in the act-state independent case is “supervaluation”: 𝐴 ≻ 𝐵 iff 
∀𝑝 ∈ 𝑃 𝐸$ 𝑢+ > 𝐸$ 𝑢, , with 𝐸$ 𝑢+ = ∑/∈𝒳𝑝 𝑋 𝑢(𝐴, 𝑋); this decision rule for binary 

preferences is entailed by either Walley-Sen Maximality or E-Admissibility. Note here, the agent’s 
credal set 𝑃 ⊆ ℙ(𝒳) reflects only beliefs about states. 

This can be nicely modeled with sets of desirable gambles. A gamble 𝑔:𝒳 → ℝ represents a 
gain/loss to the agent determined by which state obtains; ℒ(𝒳) is the set of all such gambles; 
𝐷 ⊆ ℒ is the agent’s set of desirable gambles (𝑔 ∈ 𝐷 iff 𝑔 ≻ 0; 𝑔 is preferred to the status quo). 

1. Each act 𝐴 ∈ 𝒜 has a characteristic gamble 𝑔+ 𝑋 = 𝑢 𝐴,𝑋 .
2. Link between 𝐷 and 𝑃: 𝑔 ∈ 𝐷 iff ∀𝑝 ∈ 𝑃 𝐸$ 𝑔 > 0 .
3. Read act preferences from gamble desirability: 𝐴 ≻ 𝐵 iff 𝑔+ −𝑔, ∈ 𝐷.
4. Act pricing: agent will pay 𝜖 for 𝐴 iff 𝑔+ − 𝜖 ∈ 𝐷; agent will sell 𝐴 for 𝜖 iff 𝜖 − 𝑔+ ∈ 𝐷.

In the dependent case, gambles must be defined on the total outcome space Ω; 𝑔:Ω → ℝ.

Pros & Cons
Type 1 Type 2

+  𝐷 directly represents 𝑃. -      𝐷 is based on an “effective” (fake) credal set.
+/-  Pricing looks “familiar”, but this is misleading (a constant gamble 𝜖 has a 
different meaning on a combined act-state space than in the normal context).

+     Pricing is more natural (I think, anyway).

-      Weird “characteristic” gambles +     Natural characteristic gambles
+/-  Gamble values represent the “suppositional value” (what Andrew Bacon 
calls “actual value”) of the act.

+/-  Gamble values represent the utility achieved at each world consistent with 
the act; 0 when inconsistent. 

Both representations exactly capture the act preferences and prices of the supervaluated SDT, just encoded differently.
-     Representation only exists for the special case of generalized imaging. +     Can be used to represent any SDT.

Kevin Blackwell

Can we use sets of desirable 
gambles to model supervaluated 
SDTs in a similar way?

We need to modify conditions 1 or 2, yielding two different 
kinds of representations (2 types of “bridges”) linking an 
SDG to the judgments of the supervaluated SDT. Condition 4 
(pricing) is also different between the 2 bridges.

Read the paper and supplement 
for more!
• Proofs (some in paper, others in the supplement).
• Coherence and consistency for SDGs on the total 

outcome space.
• Imprecision about the supposition rule itself.
• A simple numerical example; a slightly more 

complicated example is in the supplement.
• More discussion of the interpretation of the way 

pricing is represented in each bridge. 
• Discussion of limitations/possible future work.
• And more … 

1. Each act 𝐴 ∈ 𝒜 has a characteristic gamble 𝑔+ 𝜔 = 𝑔+ 𝐴*, 𝑋 = 𝕀+ 𝜔 𝑢 𝐴′, 𝑋 .
2. Link between 𝐷 and 𝑃-..: 𝑔 ∈ 𝐷 iff ∀𝑝 ∈ 𝑃-.. 𝐸$ 𝑔 > 0 .
3. Read act preferences from gamble desirability: 𝐴 ≻ 𝐵 iff 𝑔+ −𝑔, ∈ 𝐷.
4. Act pricing: agent will pay 𝜖 for 𝐴 iff 𝑔+ − 𝕀+𝜖 ∈ 𝐷; agent will sell 𝐴 for 𝜖 iff 𝕀+𝜖 − 𝑔+ ∈ 𝐷.


