

UMR CNRS 7253

HANDLING INCONSISTENT PREFERENCES USING POSSIBILITIES AND **INFORMATION FUSION**

Loïc Adam, Sébastien Destercke

Heudiasyc - CNRS

Multiple-Criteria Decision Analysis (MCDA)

Rubust Elicitation (sets) [1]

Name	Flavour	1/Price
American Cheddar	0	9
Mozzarella	5	5
Gorgonzola	7	3
Truffle Brie	8	1
Edam	4	4

Can you show Gorgonzola is the best ($f_{\omega} = 5.4$)? Why Edam is never taken?

Problem in reality: ω is unknown. Solution: preference elicitation.

- Idea: find all models $\omega \in \Omega$ coherent with user's preferences = set E.
- Problem: with an error, ω^* can be outside of $E \Rightarrow$ converge to a wrong model.

Possibilist Elicitation (possibility distribution) [2]

• Our solution: preference = possibility π . A confidence level α with each interaction.

• Even with a wrong answer, we can still converge to ω^* ($\pi(\omega^*) \neq 0$).

• Detection of incoherence: subnormalised π .

MO

 ω_1

Evaluation of the Quality of a Recommendation: Minimax regret

Minimax regret for robust approaches

Regret extension for possibilist approaches

Illustration of Minimax regret

score

User Error and Information Fusion

/lethod	$\int f(x^*) - f(x)$
obust elicitation	0.125
ossibility elicitation	0.0373
Jaive correction	0.233
usion 1 (ℓ -out-of- k)	0.130
usion 2 (heuristics MCS)	0.0459
usion 2 (best MCS)	0.00695

x^{*}: user prefered. *x*: recommanded. Low difference = Good.

- Detection of inconsistency from the user after multiple interactions.
- Possibilist elicitation alone better than set-based elicitation.
- Fusion methods: can potentially improve the quality of the recommendation. Provide information on the answers (determine wrong answers).

Method	\overline{x}	σ_{x}
Wrong detected	.0948	.0817
Wrong corrected	.0678	.0741
Wrong not detected	.00866	.0217

Method	\overline{x}	σ_{x}
Wrong detected	.103	.0841
Wrong corrected	.00649	.0140

• Real model : complex interactions between criteria. Supposed model: no interactions. Changing model = recommendations barely improve \Rightarrow Too many new parameters to estimate (from p-1 to 2^p-2) + elicitation strategy not optimal for complex model?

• Two different models but without interactions + same number of parameters. Changing model = better recommandations (still not perfect?).

Wrong Model and Model Change

References for Elicitation

[1] Nawal Benabbou, Patrice Perny, and Paolo Viappiani. Incremental elicitation of choquet capacities for multicriteria choice, ranking and sorting problems. *Artificial Intelligence*, 246:152–180, 2017.

[2] Loïc Adam and Sébastien Destercke. Possibilistic preference elicitation by minimax regret. In Uncertainty in Artificial Intelligence, pages 718–727. PMLR, 2021.

Wrong not detected .0238 .0331

What to do now?

Differentiate incoherence from user and model errors (difficult problem).

www.hds.utc.fr

