Solving the Allais Paradox by Counterfactual Harm

ALLAIS PARADOX (1953)

The paradox is a classical choice problem designed to challenge the supposed rationality of expected utility theory. Two experiments, each involving a choice between two gambles, are considered.

- In the first experiment, it is noticed that a sure 1M\$ reward is generally preferred to a gamble having a 1% chance of zero reward, even if there is a 10% chance of 5M\$ and 89% chance remains for 1M\$. In terms of expected utility, this tells us that, for most people, u(1) > 0.89 u(1) + 0.10 u(5)
- In the second experiment, a 1M\$ reward with an 11% chance is generally NOT preferred to a 5M\$ reward with 10% chance. Thus, 0.11 u(1) < 0.10 u(5), which is incompatible with the first choice!

	First Experiment			Second Experiment		
First gamble $(A = 0)$ Second	= 0) Second gamble $(A = 1)$		First gamble $(A = 0)$		Second gamble $(A = 1)$	
reward chance rewa	rd chance	reward	chance	reward	chance	
1M	\$ 89%	0	89%	0M\$	000/	
1M\$ 100% 0	1%	1M\$	11%		90%	
5M	\$ 10%			5M\$	10%	

$$(A=0) \succ (A=1)$$

 $(A = 1) \succ (A = 0)$

COUNTERFACTUAL HARM (2022)

Action A = a gives consequence Y = y with a utility function U depending on a (possibly uncertain) context X = x**Expected Utility (EU)** supports $a^* \coloneqq \arg \max_a E[U|a, x]$

with $E[U|a, x] \coloneqq \int_{y} P(y|a, x)U(a, x, y)$

EU does not directly take into account the other actions' consequences.

The (counterfactual) harm (wrt an alternative action a') is instead:

$$h(a, x, y) \coloneqq \int_{y'} P(Y_{a'} = y' | a, x, y) \max\{0, U(a, x, y) - U(a', x, y')\}$$

(Non-negative) utility losses are weighted by a probability *P* mixing the factual (a, y) and counterfactual (a', y') worlds.

A structural causal model is needed to compute $P(Y_{a'} = y'|a, x, y)!$ Harm-averse decision-making by harm-penalised utility:

$$V(a, x, y) := U(a, x, y) - \lambda h(a, x, y)$$

with harm-aversion coefficient $\lambda > 0$

Marco **Zaffalon**, Alessandro **Antonucci**, Oleg **Szehr**

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA) - Lugano (Switzerland) {marco.zaffalon,alessandro.antonucci,oleg.szher}@idsia.ch

13th International Symposium on Imprecise Probabilities: Theories and Applications 11-14 July, 2023, Oviedo (Spain)

ALLAIS CHOICE AS A CAUSAL MODEL (OUR WORK)

- Boolean variables *E* and A to distinguish the two experiments and gambles
- Context *X* as a ternary state with chances P(X = [0,1,2]) = [0.89,0.01,0.10]
- Reward by a structural equation y = f(a, x, e)
- Utility U is only determined by the reward (u(0), u(1), u(5))

Separately for each experiment, choice between the two gambles (A = 0 versus A = 1)described in terms of harm-penalised utility Let us compute the counterfactual harm by already summing out the context

 $h(A = 0, Y = y | E = e) = \sum_{y'=0,1,5} P(y'_{A=1} | Y = y, A = 0, E = e) \max\{0, u(y') - u(y)\}$ $h(A = 1, Y = y|E = e) = \sum_{y'=0,1,5} P(y'_{A=0}|Y = y, A = 1, E = e) \max\{0, u(y') - u(y)\}$

The counterfactual probability should be performed in the twin network of the structural model with the two worlds duplicated.

Taking a linear utility (e.g., u(y) = y) we get: E[h(A = 0|E = 0)] = 1 > E[h(A = 1|E = 0)] = 0.4, $E[h(A = 0|E = 1)] = 0.0\overline{1} < E[h(A = 1|E = 1)] = 3.6\overline{3}.$

If people were to reason counterfactually, there would be no paradox at all.

COUNTERFACTUALS ARE IMPRECISE PROBABILISTIC QUERIES (2020)

Causal queries such as those considered by counterfactual harm might suffer from partial identifiability issues: this means that, unlike the case in our example, a precise computation of the query is not possible, and the model specification only allows to compute bounds. Solution? A mapping between causal models and credal networks!

E.g., unconditional harm (with a vacuous model over *E*) gives overlapping intervals, i.e., $0.01 \le \mathbb{E}[h(A = 0)] \le 1.00 \text{ and } 0.40 \le \mathbb{E}[h(A = 1)] \le 3.63.$

Reward	f(a, x, e)				
Experiment	<i>E</i> =	= 0	E =	= 1	
Gamble	A = 0	A = 1	A = 0	A = 1	
X = 0	1	1	0	0	
X = 1	1	0	1	0	
X = 2	1	5	1	5	

Structural Causal Models Are (Solvable by) Credal Networks					
Marco Zaffalon	ZAFFALON@IDSIA.C				
Alessandro Antonucci	ALESSANDRO@IDSIA.CH				
Rafael Cabañas	RCABANAS@IDSIA.C				
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (I	DSIA), Lugano, Switzerland				

Library for counterfactuals by credal nets and EM github.com/Idsia/credici