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DP AS AN INTERVAL OF MEASURES A

Let M : X x |0,1] — 7T be a data-release mechanism with
each dataset x € X inducing a probability P, on 7.

Definition. (Dwork et al. 2006) Given a data universe
X equipped with a metric d, the mechanism M satisfies e-
differential privacy (DP) if

dMULT(Pwa Px’) < Ed(xa 37/)7
for all z, 2’ € X, where

1. dMULT(P7 Q) — SUPS‘ID gggg

tance between measures P,QQ on T ;

is the multiplicative dis-

2. d(x, ") is the shortest path length between = and 2z’ in
a graph on & with unit-length edges; for example:

* (bounded case) the Hamming distance

dHAM(xa Qj/) — Z 1xz7ﬁx;7
1=1

if || = |2'| = n, and oo otherwise, where the
data x = (x1,22,...,x,) are vectors and |z| is
the size of x; or

* (unbounded case) the symmetric difference metric
da(z,2') = |z \ 2’| + "\ ],

where the data z, 2’ € X are multisets and = \ 2’

1. Randomised Response (Warner 1965): Taking X =
U,,ent0, 1} as the data universe, and d = dpam, define the
randomised response mechanism:

MRR(QZ,U) — (,ZEz —|—Uz mod 2,)
where Uy, Uy, ... & Bernoulli(p). That is, given a binary
n-vector x as input, Mrgr outputs another binary n-vector
with i-th component z; + B; mod 2, flipping each bit z;
with probability p = (expe+ 1)~ .

2. The Laplace Mechanism Mj,,, adds noise to a query ¢ :
X — R* with standard deviation proportional to its ¢lobal
(1-sensitivity A(q), i.e.:

Mt ap(z,U) = q(x) + U,

where b = A(q)/¢, and U is a k-vector of iid Laplace ran-

dom variables with density f(z) = 0.5 exp(—|z|), and

Ag) = sup |lg(z) —q(z")];.
d(x,x’)=1
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Densities p.., p,/ of the Laplace mechanism, when d(z,x') = 1

is the (multi-)set difference.
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Let €2 be the set of all o-finite measures on 7. For u,v € (),
write © < v to denote that u(S) < v(S) for all S.

Definition. (DeRobertis and Hartigan 1981) Given L, U &
() with L < U, the convex set of measures

T(LU)={peQ: L<u<U},

is an interval of measures. L and U are called the lower
and upper measures, respectively.

Theorem. The following statements are equivalent:

1. M is e-differentially private.

2. Pu(S) < e“P.(S) for all S and all z,2" € X with
d(z,z’) = 1 (the classical DP definition).

3. Foralld e Nand all z, 2" € X with d(z,2") = 9,
Pa:’ - I(Lx,dea Ux,5e) 9

where L, 5. = e %P, and Ug.se = e’ P,.

4. For all x € X and all measures v € €, if P, has a
density p, with respect to v, then every d-connected
z’ also has a v-density p, satisfying

P (1) € psu(t) exp (Fed(x, 2")) ,

BOUNDS ON THE PRIVATISED DATA PROBABILITY

The relevant vehicle for inference in the private setting is the
marginal probability of the observed data t (the privatised
data probability):

P(teS\H):/

X

P, (S)dPy(x).

* Viewed as a function of 6§, this is the marginal likelihood
of 0.

e All frequentist procedures compliant with likelihood
theory and all Bayesian inference from privatised data
hinge on this function.

Theorem. Let M be e-DP. If supp(x | t,0) is d-connected,
then for any x. € supp(z | t,6),

p(t|0) € p,, (t)exp (Fedy),

where d.. = sup,cqupp(zt.0) (T, T«). Furthermore if supp(z |
t,0) is d-connected for P(t | #)-almost all ¢t € T, then

P(t]0) e Z(Le,Ue),

where L. and U, have densities

ess inf

exp (—edy) p,, and
T Esupp(z|t,0)

ess sup
x .« Esupp(x|t,0)

exp (€dx) Pz, -

\J

Note that Z (L., U.):

* depends on the data generating distribution Fy only
through supp(«x | t,6). When supp(Fy) is constant, it is
completely free of 0.

* is non-vacuous whenever d, < oo. (For example, when
the analyst has partial prior knowledge of the data X
so that |z| < oo for all x € supp(Fy).)
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Example 1 (randomised response) illustrated. Upper and lower
density bounds for the privatised data probability p(t | 6) with
e = 1 and supp(x | t,0) C {x : || < 10}. These bounds are a
function of ¢ only through |¢| (the number of records).

forallt € T.
\(Note: x,x’ are d-connected if d(z,z") < o0.)
0.08 1
0.06
2
2
< 0.04
©
0.001 , , ,
20 10 0 10 20 30
t
0.4 -
0.3 -
>
2
S 0.2
©
0.1
0.0 1
20 -10 0 10 20 30

t
Example 2 (the Laplace mechanism for a privatised binary sum)

illustrated. Upper and lower density bounds for p(¢ | 8) with
e = 0.1 (top) and € = 0.25 (bottom). Note that these bounds:
e donot depend on 6 nor the assumed data model Fy.
e are tighter and more informative when privacy protection is
more stringent (smaller ¢).

FREQUENTIST PRIVACY-PROTECTED INFERENCE

BAYESIAN PRIVACY-PROTECTED INFERENCE

~

Theorem (Neyman-Pearson hypothesis testing). Consider
testing
Hy:0 =6 Hy:0 =01,

VS.

for some 0y # 6, € O. Let S; = supp(zx | ¢, 0;) and suppose
that every z € Sy is d-connected to every z’ € 5.

In the private setting, the power of any level-a test
is bounded above by

o exp(dix€),

Where d** — Supxeso,x/esl d(CE, CU/).

This Theorem generalises the classical result of Wasserman
\and Zhou 2010 beyond the case of iid records.

Suppose that supp(z | t) := U66supp(7r) supp(x | t,0) is d-
connected for P(t¢)-almost all £ € 7. Also assume the prior
7 on 6 1s proper.

Theorem (prior predictive bounds). The analyst’s prior
predictive probability for ¢t ~ M (X,U) (that is e-DP) sat-
isfies

p () <p(t) <Pc(1),

€

for every t € 7, where p_and p, are defined as

essinf  exp (edy) pe.,

exp (—edy) p,, and
z. Esupp(z|t)

ess sup
x . Esupp(x|t)

respectively, with d. = sup,cqupp(a(t) AT, Tx).

\-

Theorem (posterior bounds). The analyst’s posterior prob-
ability given (a realisation of an e-DP mechanism) ¢ satisties

(0 | t) € m(0) exp(Fedys),

where d.. = Sup, . cqupp(z|t) AT, 7).

This Theorem elucidates e-DP’s guarantee of prior-to-
posterior privacy (restricting an attacker’s posterior departure
from their prior, Duncan and Lambert 1986), under:

e arbitrary specifications of the data model Fp;
e arbitrary choice of (proper) prior 7(#); and

* is non-vacuous so long as d.. is finite (which is not
unreasonable in general).

SUMMARY

~

e We provide general limits on important statistical
quantities in likelihood, frequentist and Bayesian infer-
ence from e-differentially private data.

 Under very mild assumptions, these results are valid
tfor arbitrary e-DP mechanisms M, parameters 6 € ©, pri-
ors m and data generating models Py(x).

\-

* Our bounds are optimal — they cannot be further im-
proved without assumptions on M, 0, 7 or Py(x).

e Therefore, these bounds are useful representations of
the limits of statistical learning — for attackers as well
as valid analysts — under the constraint of e-DP.

* These results were accomplished by characterising e-
DP using a foundational tool from the IP literature —
the interval of measures.

e This work provides clarity to the semantic debate on pri-
vacy and disclosure in the curation and governance of
official statistics.




