DIFFERENTIAL PRIVACY: GENERAL INFERENTIAL LIMITS VIA INTERVALS OF MEASURES

James Bailie¹, Ruobin Gong²

¹jamesbailie@g.harvard.edu – Harvard University, USA ²ruobin.gong@rutgers.edu – Rutgers University, USA

DIFFERENTIAL PRIVACY AS LIPSCHITZ CTY.

Let $M: \mathcal{X} \times [0,1] \to \mathcal{T}$ be a data-release mechanism with each dataset $x \in \mathcal{X}$ inducing a probability P_x on \mathcal{T} .

Definition. (Dwork et al. 2006) Given a data universe \mathcal{X} equipped with a metric d, the mechanism M satisfies ϵ -differential privacy (DP) if

$$d_{\mathrm{MULT}}(P_x, P_{x'}) \le \epsilon d(x, x'),$$

for all $x, x' \in \mathcal{X}$, where

- 1. $d_{\text{MULT}}(P, Q) = \sup_{S} \left| \ln \frac{P(S)}{Q(S)} \right|$ is the *multiplicative distance* between measures P, Q on \mathcal{T} ;
- 2. d(x, x') is the shortest path length between x and x' in a graph on \mathcal{X} with unit-length edges; for example:
 - (bounded case) the *Hamming distance*

$$d_{\text{HAM}}(x, x') = \sum_{i=1}^{n} 1_{x_i \neq x'_i},$$

if |x| = |x'| = n, and ∞ otherwise, where the data $x = (x_1, x_2, \dots, x_n)$ are vectors and |x| is the size of x; or

• (unbounded case) the *symmetric difference* metric

$$d_{\triangle}(x, x') = |x \setminus x'| + |x' \setminus x|,$$

where the data $x, x' \in \mathcal{X}$ are multisets and $x \setminus x'$ is the (multi-)set difference.

EXAMPLES

1. Randomised Response (Warner 1965): Taking $\mathcal{X} = \bigcup_{n \in \mathbb{N}} \{0,1\}^n$ as the data universe, and $d = d_{\text{HAM}}$, define the randomised response mechanism:

$$M_{\rm RR}(x,U) = (\ldots, x_i + U_i \mod 2, \ldots)$$

where $U_1, U_2, \ldots \stackrel{iid}{\sim}$ Bernoulli(p). That is, given a binary n-vector x as input, M_{RR} outputs another binary n-vector with i-th component $x_i + B_i \mod 2$, flipping each bit x_i with probability $p = (\exp \epsilon + 1)^{-1}$.

2. The Laplace Mechanism M_{Lap} adds noise to a query $q: \mathcal{X} \to \mathbb{R}^k$ with standard deviation proportional to its *global* ℓ_1 -sensitivity $\Delta(q)$, i.e.:

$$M_{\rm Lap}(x, U) = q(x) + bU,$$

where $b=\Delta(q)/\epsilon$, and U is a k-vector of iid Laplace random variables with density $f(z)=0.5\exp(-|z|)$, and

$$\Delta(q) = \sup_{d(x,x')=1} ||q(x) - q(x')||_1.$$

Densities $p_x, p_{x'}$ of the Laplace mechanism, when d(x, x') = 1

DP AS AN INTERVAL OF MEASURES

Let Ω be the set of all σ -finite measures on \mathcal{T} . For $\mu, \nu \in \Omega$, write $\mu \leq \nu$ to denote that $\mu(S) \leq \nu(S)$ for all S.

Definition. (DeRobertis and Hartigan 1981) Given $L, U \in \Omega$ with $L \leq U$, the convex set of measures

$$\mathcal{I}(L,U) = \{ \mu \in \Omega : L \le \mu \le U \},\$$

is an interval of measures. L and U are called the lower and upper measures, respectively.

Theorem. The following statements are equivalent:

- 1. M is ϵ -differentially private.
- 2. $P_{x'}(S) \leq e^{\epsilon} P_x(S)$ for all S and all $x, x' \in \mathcal{X}$ with d(x, x') = 1 (the classical DP definition).
- 3. For all $\delta \in \mathbb{N}$ and all $x, x' \in \mathcal{X}$ with $d(x, x') = \delta$,

$$P_{x'} \in \mathcal{I}(L_{x,\delta\epsilon}, U_{x,\delta\epsilon}),$$

where $L_{x,\delta\epsilon} = e^{-\delta\epsilon}P_x$ and $U_{x,\delta\epsilon} = e^{\delta\epsilon}P_x$.

4. For all $x \in \mathcal{X}$ and all measures $\nu \in \Omega$, if P_x has a density p_x with respect to ν , then every d-connected x' also has a ν -density $p_{x'}$ satisfying

$$p_{x'}(t) \in p_x(t) \exp(\pm \epsilon d(x, x')),$$

for all $t \in \mathcal{T}$.

(Note: x, x' are d-connected if $d(x, x') < \infty$.)

BOUNDS ON THE PRIVATISED DATA PROBABILITY

The relevant vehicle for inference in the private setting is the marginal probability of the observed data t (the **privatised** data probability):

$$P(t \in S \mid \theta) = \int_{\mathcal{X}} P_x(S) dP_{\theta}(x).$$

- Viewed as a function of θ , this is the *marginal likelihood* of θ .
- All frequentist procedures compliant with likelihood theory and all Bayesian inference from privatised data hinge on this function.

Theorem. Let M be ϵ -DP. If $\operatorname{supp}(x \mid t, \theta)$ is d-connected, then for any $x_* \in \operatorname{supp}(x \mid t, \theta)$,

$$p(t \mid \theta) \in p_{x_*}(t) \exp\left(\pm \epsilon d_*\right),$$

where $d_* = \sup_{x \in \text{supp}(x|t,\theta)} d(x,x_*)$. Furthermore if $\text{supp}(x \mid t,\theta)$ is d-connected for $P(t \mid \theta)$ -almost all $t \in \mathcal{T}$, then

$$P(t \mid \theta) \in \mathcal{I}(L_{\epsilon}, U_{\epsilon}),$$

where L_{ϵ} and U_{ϵ} have densities

$$\underset{x_* \in \text{supp}(x|t,\theta)}{\text{ess sup}} \exp\left(-\epsilon d_*\right) p_{x_*} \text{ and } \underset{x_* \in \text{supp}(x|t,\theta)}{\text{ess inf}} \exp\left(\epsilon d_*\right) p_{x_*}.$$

Note that $\mathcal{I}(L_{\epsilon}, U_{\epsilon})$:

- depends on the data generating distribution P_{θ} only through $\operatorname{supp}(x \mid t, \theta)$. When $\operatorname{supp}(P_{\theta})$ is constant, it is completely *free of* θ .
- is *non-vacuous* whenever $d_* < \infty$. (For example, when the analyst has partial prior knowledge of the data X so that $|x| < \infty$ for all $x \in \operatorname{supp}(P_{\theta})$.)

Example 1 (randomised response) illustrated. Upper and lower density bounds for the privatised data probability $p(t \mid \theta)$ with $\epsilon = 1$ and $\operatorname{supp}(x \mid t, \theta) \subset \{x : |x| \leq 10\}$. These bounds are a function of t only through |t| (the number of records).

Example 2 (the Laplace mechanism for a privatised binary sum) illustrated. Upper and lower density bounds for $p(t \mid \theta)$ with $\epsilon = 0.1$ (top) and $\epsilon = 0.25$ (bottom). Note that these bounds:

- do not depend on θ nor the assumed data model P_{θ} .
- are tighter and more informative when privacy protection is more stringent (smaller ϵ).

FREQUENTIST PRIVACY-PROTECTED INFERENCE

Theorem (Neyman-Pearson hypothesis testing). Consider testing

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$,

for some $\theta_0 \neq \theta_1 \in \Theta$. Let $S_i = \text{supp}(x \mid t, \theta_i)$ and suppose that every $x \in S_0$ is d-connected to every $x' \in S_1$.

In the private setting, the power of any level- α test is bounded above by

$$\alpha \exp(d_{**}\epsilon),$$

where $d_{**} = \sup_{x \in S_0, x' \in S_1} d(x, x')$.

This Theorem generalises the classical result of Wasserman and Zhou 2010 beyond the case of iid records.

BAYESIAN PRIVACY-PROTECTED INFERENCE

Suppose that $\operatorname{supp}(x \mid t) := \bigcup_{\theta \in \operatorname{supp}(\pi)} \operatorname{supp}(x \mid t, \theta)$ is d-connected for P(t)-almost all $t \in \mathcal{T}$. Also assume the prior π on θ is proper.

Theorem (prior predictive bounds). The analyst's prior predictive probability for $t \sim M(X,U)$ (that is ϵ -DP) satisfies

$$\underline{p}_{\epsilon}(t) \leq p(t) \leq \overline{p}_{\epsilon}(t),$$

for every $t \in \mathcal{T}$, where \underline{p}_{ϵ} and \overline{p}_{ϵ} are defined as

 $\underset{x_* \in \text{supp}(x|t)}{\text{ess sup}} \exp\left(-\epsilon d_*\right) p_{x_*} \text{ and } \underset{x_* \in \text{supp}(x|t)}{\text{ess inf}} \exp\left(\epsilon d_*\right) p_{x_*}$

respectively, with $d_* = \sup_{x \in \text{supp}(x|t)} d(x, x_*)$.

Theorem (posterior bounds). The analyst's posterior probability given (a realisation of an ϵ -DP mechanism) t satisfies

$$\pi(\theta \mid t) \in \pi(\theta) \exp(\pm \epsilon d_{**}),$$

where $d_{**} = \sup_{x,x' \in \text{supp}(x|t)} d(x,x')$.

This Theorem elucidates ϵ -DP's guarantee of **prior-to-posterior** privacy (*restricting an attacker's posterior departure from their prior*, Duncan and Lambert 1986), under:

- arbitrary specifications of the data model P_{θ} ;
- arbitrary choice of (proper) prior $\pi(\theta)$; and
- is non-vacuous so long as d_{**} is finite (which is not unreasonable in general).

SUMMARY

- We provide general limits on important statistical quantities in *likelihood*, *frequentist* and *Bayesian* inference from ϵ -differentially private data.
- Under very mild assumptions, these results are valid for arbitrary ϵ -DP mechanisms M, parameters $\theta \in \Theta$, priors π and data generating models $P_{\theta}(x)$.
- Our bounds are *optimal* they cannot be further improved without assumptions on M, θ, π or $P_{\theta}(x)$.
- Therefore, these bounds are useful representations of the limits of statistical learning for attackers as well as valid analysts under the constraint of ϵ -DP.
- These results were accomplished by characterising ϵ -DP using a foundational tool from the IP literature the *interval of measures*.
- This work provides clarity to the *semantic debate on privacy and disclosure* in the curation and governance of official statistics.