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1. Introduction to stochastic orders and stochastic dominance

Stochastic orders [2, 5] have been successfully used in probability and statistics and in many related
fields of application for the comparison of random variables.

The most classical stochastic order is stochastic dominance. A random variable X stochastically
dominates another random variable Y , denoted by X ⪰FSD Y , if

FX(x) ≤ FY (x), ∀x ∈ R .

For instance, let X ⇝ N(1, 1) and Y ⇝ N(0, 1) be two normal distributions. It holds that X ⪰FSD Y ,
since FX is pointwisely smaller than Fy as illustrated in the following figure:

An interesting property of stochastic dominance is that:

X ⪰FSD Y ⇒ E(X) ≥ E(Y ) .

The converse implication is true within a location distribution family.

2. The γ-index

Unfortunately, stochastic dominance does not necessarily hold in practice. For instance, within a
location-scale family generated from a standard distribution with unbounded support (such as the
normal distribution family), there do not exist two random variables with different variance such that
one of the random variables stochastically dominates the other. Still, if the location parameters of
both random variables are very far from one another, this stochastic dominance would be ‘very close’
to being satisfied.

It is for such purpose that a measure of deviation from stochastic dominance is of interest. For the
proposal of such a measure, we could resort to a well-known property of stochastic dominance,
which may also be expressed in terms of the quantile functions:

X ⪰FSD Y ⇔ F−1
X (p) ≥ F−1

Y (p), ∀p ∈ ]0, 1[ .

For X ⇝ N(1, 1) and Y ⇝ N(0, 1), it can be seen that F−1
X is pointwisely greater than F−1

y as
illustrated in the following figure:

The so-called γ-index [1] is based on this interpretation of stochastic dominance by measuring how
far a random variable is from stochastically dominating another. Formally, the γ-index is defined as
follows:

γ(X, Y ) = ℓ
(
{p ∈ ]0, 1[ | F−1

X (p) > F−1
Y (p)}

)
,

where ℓ(·) represents the Lebesgue measure. Note that γ(X, Y ) = 0 means that Y ⪰FSD X. If the
quantile functions do not intersect, γ(X, Y ) = 1 means that X ⪰FSD Y .

The figure below represents the value of the γ-index γ(X, Y ), where X ⇝ N(0, 1) and Y ⇝ N(µ, σ).
Yellow means values close to zero and blue means values close to one.
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3. Taking dependence into account within the γ-index

Interestingly, under comonotonicity of X and Y (see [3]) and assuming P (X = Y ) = 0, it holds that

γ(X, Y ) = P (X ≥ Y ) = P (Y −X ≤ 0) = FY−X(0) .

This raises the question of whether we should take account of the dependence between the random
variables when considering the γ-index. Indeed, the distribution of Z = Y −X can be computed via
the Lebesgue-Stieljes integral or convolution (see, e.g., [6]), by simply fixing the copula C modelling
the dependence between X and Y .

The figures below represents the value of P (X ≥ Y ), where X ⇝ N(0, 1) and Y ⇝ N(µ, σ),
assuming that X and Y are independent (left, C = Π) and opposite (right, C = W ). Interestingly,
the γ-index corresponds to the perfect (C = M ) case.

4. What happens under imprecision?

In some cases, there exists some imprecision on the distributions for which we would like to mea-
sure the deviation from stochastic dominance [4]. In such cases, we need to resort to interval
arithmetic [6] and we would obtain an interval probability

[P (X ≥ Y ), P (X ≥ Y )] .

The figures below illustrate the lower bound (left) and the upper bound (right) for the case in which
X ⇝ N(0, [1, 2]) and Y ⇝ N(µ, σ), assuming that X and Y are comonotone.

The imprecision could also arise in the copula itself. For instance, the figures below illustrate
the lower bound (left) and the upper bound (right) for the case in which X ⇝ N(0, 1) and
Y ⇝ N(µ, σ), now considering that the copula is completely unknown, and using the Fréchet
bounds (C = [W,M ]). Note: the result is not a simple envelope of the two precise cases using M
and W .

5. Conclusions

In this work, we have explored the use of the γ-index as a measure of deviation from ominance.
Since there is annderlying assumption of comonotonicity between the random variables, the use of
other types of dependences between the random variables has been modelled by means of copulas.
It has been shown that the presented results are easily extended to the case in which there exists
imprecision.
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