A Generalized Notion of Conjunction for Two Conditional Events

Lydia Castronovo and Giuseppe Sanfilippo

Department of Mathematics and Computer Science, University of Palermo, Italy
lydia.castronovo@unipa.it, giuseppe.sanfilippo@unipa.it

Abstract

Traditionally the conjunction of conditional events has been defined as a three-valued object. However, in this way classical logical and probabilistic properties are not preserved. In recent literature, the conjunction of two conditional events $(A \mid H) \wedge(B \mid K)$ defined as a five-valued object with set of possible values $\{1,0, x, y, z\}$, where $x=P(A \mid H), y=P(B \mid K)$, and $z=\mathbb{P}[(A \mid H) \wedge(B \mid K)]$ and satisfying classical probabilistic properties, has been deepened in the setting of coherence. In our paper we propose a generalization of this object, denoted by $(A \mid H) \wedge a, b(B \mid K)$, where the values x and y are replaced by two arbitrary values $a, b \in[0,1]$.

Preliminaries

Conditional events and random quantities
We denote by $A H$ the conjunction of the events A and H. A conditional event $A \mid H$, with $H \neq \varnothing$, is looked at as a three-valued logical entity

$$
A \left\lvert\, H= \begin{cases}\text { True (1), } & \text { if } A H \text { is true }, \\ \text { False (0), } & \text { if } \bar{A} H \text { is true } \\ \text { Void, }(x) & \text { if } \bar{H} \text { is true }\end{cases}\right.
$$

where $x=P(A \mid H)$. Given a random quantity X and an event $H \neq \varnothing$, we set

$$
X \mid H=X H+\mathbb{P}(X \mid H) \bar{H} .
$$

Definition 1 (Gilio \& Sanfilippo 2014)
Given two conditional events $A|H, B| K$, with $P(A \mid H)=x, P(B \mid K)=y$, their conjunction is defined as $(A \mid H) \wedge(B \mid K)=(A H B K+x \bar{H} B K+$ $y A H \bar{K}) \mid(H \vee K)$, that is

$$
(A \mid H) \wedge(B \mid K)= \begin{cases}1, & \text { if } A H B K \text { is true } \\ 0, & \text { if } \bar{A} H \vee \bar{B} K \text { is true } \\ x, & \text { if } \bar{H} B K \text { is true } \\ y, & \text { if } A H \bar{K} \text { is true } \\ z, & \text { if } \bar{H} \bar{K} \text { is true }\end{cases}
$$

where $z=\mathbb{P}[(A \mid H) \wedge(B \mid K)]$. By coherence
$z \in[\max \{x+y-1,0\}, \min \{x, y\}]$ (F-H bounds).

Imprecise Case

Theorem 2

Let $\mathcal{A}=\left(\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right)$ be an interval-valued assessment on $\{A|H, B| K\}$. Then, the interval of coherent extensions of \mathcal{A} to $(A \mid H) \wedge_{a, b}(B \mid K)$ is the interval $\left[z^{*}, z^{* *}\right]=\left[z^{\prime}\left(x_{1}, y_{1}\right), z^{\prime \prime}\left(x_{2}, y_{2}\right)\right]$, where $z^{\prime}(x, y)$ and $z^{\prime \prime}(x, y)$ are defined in (1) and (2), resp.

$\mathcal{A}=[.5, .6] \times[.7, .8],\left[z^{*}, z^{* *}\right]=[.086, .75]$

The Case $H K=\varnothing$

Theorem 3

Let an interval-valued probability assessment $\mathcal{A}=\left(\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right)$ on $\{A|H, B| K\}$, with $H K=\varnothing$, be given. Then, the interval of coherent extensions of \mathcal{A} to $(A \mid H) \wedge_{a, b}(B \mid K)$ is $\left[z^{*}, z^{* *}\right]=\left[\min \left\{a y_{1}, b x_{1}\right\}, \max \left\{a y_{2}, b x_{2}\right\}\right]$.

Main Result

Definition 2

Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity
$(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)=$

$$
\begin{cases}1 \text { (win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\ 0 \text { (lose), } & \text { if } A \mid H \text { is false or } B \mid K \text { is false, } \\ a \text { (partly win), } & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\ b \text { (partly win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\ z(\text { called off }), & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases}
$$

where $z=\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]$.

$(a, b)=(x, y)=(.6, .7)$,
$\mathcal{M}^{\prime}=\left(x, y, z^{\prime}\right)=(.6, .7, .3)$,
$\mathcal{M}^{\prime \prime}{ }_{a, b}=\left(x, y, z^{\prime \prime}\right)=(.6, .7, .6)$

Theorem 1

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M}=(x, y, z)$ on the family of conditional random quantities $\mathcal{F}=\left\{A \mid H,(B \mid K),(A \mid H) \wedge_{a, b}(B \mid K)\right\}$ is coherent if and only if $(x, y) \in[0,1]^{2}$ and $z \in\left[z^{\prime}, z^{\prime \prime}\right]$, where

$$
z^{\prime}=\left\{\begin{array}{lc}
(x+y-1) \cdot \min \left\{\frac{a}{x}, \frac{b}{y}, 1\right\}, & \text { if } x+y-1>0 \tag{1}\\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
\begin{equation*}
z^{\prime \prime}=\max \left\{z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \min \left\{z_{3}^{\prime \prime}, z_{4}^{\prime \prime}\right\}\right\} \tag{2}
\end{equation*}
$$

where
$z_{1}^{\prime \prime}=\min \{x, y\}, \quad z_{2}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(b-a y)+y(a-b x)}{1-x y}, \\ 1, \text { if }(x, y)=(1,1),\end{array}\right.$ if $(x, y) \neq(1,1)$,
$z_{3}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(1-a)+y(a-x)}{1-x}, \text { if } x \neq 1, \\ 1, \text { if } x=1,\end{array} \quad z_{4}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(b-y)+y(1-b)}{1-y}, \text { if } y \neq 1, \\ 1, \text { if } y=1 .\end{array}\right.\right.$

Further aspects

Remark. When we assess $P(A \mid H)=x$ and $P(B \mid K)=y$, from definitions 1 and 2 it holds that

$$
(A \mid H) \wedge x, y(B \mid K)=(A \mid H) \wedge(B \mid K)
$$

that is $(A \mid H) \wedge_{a, b}(B \mid K)$ reduces to $(A \mid H) \wedge(B \mid K)$ when $a=x$ and $b=y$. Moreover,
$\mathbb{P}\left[(A \mid H) \wedge_{x, y}(B \mid K)\right]=P(A H B K \mid(H \vee K))+P(A \mid H) P(\bar{H} B K \mid(H \vee K))+P(B \mid K) P(A H \bar{K} \mid(H \vee K))$.

Interpretation

Let us consider two individuals O and O^{\prime}. Suppose that O^{\prime} asserts $P^{\prime}(A \mid H)=a$ and $P^{\prime}(B \mid K)=b$. Then,

$$
(A \mid H) \wedge a, b(B \mid K) \overbrace{=}^{\text {Def. } 2}(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K) \overbrace{=}^{\text {Def. } 1}(A \mid H) \wedge^{\prime}(B \mid K),
$$

where $(A \mid H) \wedge^{\prime}(B \mid K)$ denotes the conjunction, as in Def.1, w.r.t. O^{\prime}. Thus, $\mathbb{P}^{\prime}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]$ satisfies the Fréchet-Hoeffding, that is:

$$
\mathbb{P}^{\prime}[(A \mid H) \wedge a, b(B \mid K)]=\mathbb{P}^{\prime}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right] \in[\max \{a+b-1,0\}, \min \{a, b\}] .
$$

Now, suppose that O asserts $P(A \mid H)=x$ and $P(B \mid K)=y$. Then, for the individual O, the lower and upper bounds z^{\prime} and $z^{\prime \prime}$ on $(A \mid H) \wedge a, b(B \mid K)$ computed by Theorem 1, represent the lower and upper bounds for the coherent extension $\mathbb{P}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right]$ of the assessment (x, y) on $\{A|H, B| K\}$. Therefore,
$\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]=\mathbb{P}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right] \neq \mathbb{P}[(A \mid H) \wedge(B \mid K)]=\mathbb{P}\left[(A \mid H) \wedge_{x, y}(B \mid K)\right]$.

