A Generalized Notion of Conjunction for Two Conditional Events

LYDIA CASTRONOVO, GIUSEPPE SANFILIPPO **UNIVERSITY OF PALERMO, ITALY**

A Generalized Notion of Conjunction for Two Conditional Events

LYDIA CASTRONOVO, GIUSEPPE SANFILIPPO **UNIVERSITY OF PALERMO, ITALY**

A Generalized Notion of Conjunction for Two Conditional Events

LYDIA CASTRONOVO, GIUSEPPE SANFILIPPO **UNIVERSITY OF PALERMO, ITALY**

Ict year Phi Studeet

Subjective Probability Subjective Probability Conditionals auditerated conditionals Knowledge representation and much more

A Generalized Notion of Conjunction for Two Conditional Events

YDIA CASTRONOVO, GIUSEPPE SANFILIPPO **UNIVERSITY OF PALERMO, ITALY**

Ict year PhD Student

Subjective Probability Conditionals and iterated conditionals Knowledge representation

A Generalized Notion of Conjunction for **Two Conditional Events**

STRONOVO, GIUSEPPE SANFILIPPO **UNIVERSITY OF PALERMO, ITALY**

Ict year PhD Student

matematica e informatica @ unipa

Definition

Given two events A and $H \neq \emptyset$, the conditional event A | H is a three-valued logical entity which is True when AH is true, $F\alpha$ when \overline{AH} is true and Void when \overline{H} is true.

Definition

Given two events A and $H \neq \emptyset$, the conditional event A | H is a three-valued logical entity which is True when AH is true, $F\alpha$ when $\overline{A}H$ is true and Void when \overline{H} is true.

$$A \mid H = \begin{cases} 1 & A H \\ - &$$

Definition

Given two events A and $H \neq \emptyset$, the conditional event A | H is a three-valued logical entity which is True when AH is true, False when $\overline{A}H$ is true and Void when \overline{H} is true.

$$A = \begin{bmatrix} 1 & AH \\ -AH & -P(A) \\ -X & H \end{bmatrix}$$

How to define the conjunction of conditional events?

Definition

Given two events A and $H \neq \emptyset$, the conditional event A | H is a three-valued logical entity which is True when AH is true, False when $\overline{A}H$ is true and Void when \overline{H} is true.

THREE-VALUED LOGICS

Kleene-de Finetti, Lukasiewicz, Bochvar, Sobocinski

$$A = \begin{bmatrix} 1 & AH \\ -AH & -P(A) \\ -X & H \end{bmatrix}$$

How to define the conjunction of conditional events?

Definition

Given two events A and $H \neq \emptyset$, the conditional event A | H is a three-valued logical entity which is True when AH is true, False when $\overline{A}H$ is true and Void when \overline{H} is true.

Definition (McGee 1989, Gilio and Sanfilippo, 2014)

Given two conditional events A | H, B | K and a coherent probability assessment P(A | H) = x,

 $(A | H) \land (B | K) = (AHBK + x\overline{H}BK + yAH\overline{K}) | (H \lor K)$

$$A = \begin{bmatrix} 1 & AH \\ -AH & -P(A) \\ -X & H \end{bmatrix}$$

How to define the conjunction of conditional events?

P(B | K) = y, the conjunction $(A | H) \land (B | K)$ is defined as the following conditional random quantity

Definition

Given two conditional events A | H, B | K and a coherent probability assessment P(A | H) = x, P(B | K) = y, the conjunction $(A | H) \land (B | K)$ is

defined as the following conditional random quantity $(A | H) \land (B | K) = (AHBK + x\overline{HBK} + yAH\overline{K}) | (H \lor K)$, where $z = \mathbb{P}((A | H) \land (B | K))$.

Definition

Given two conditional events A | H, B | K and a coherent probability assessment P(A | H) = x, P(B | K) = y, the conjunction $(A | H) \land (B | K)$ is defined as the following conditional random quantity $(A | H) \land (B | K) = (AHBK + x\overline{HBK} + yAH\overline{K}) | (H \lor K)$, where $z = \mathbb{P}((A | H) \land (B | K))$.

"(it's five - valued!

Definition

Given two conditional events A | H, B | K and a coherent probability assessment P(A | H) = x, P(B | K) = y, the conjunction $(A | H) \land (B | K)$ is

defined as the following conditional random quantity $(A | H) \land (B | K) = (AHBK + x\overline{HBK} + yAH\overline{K}) | (H \lor K)$, where $z = \mathbb{P}((A | H) \land (B | K))$.

if AHBK is true, if $\overline{A}H \lor \overline{B}K$ is true, if $\overline{H} \overline{K}$ is true,

Definition

The probabilistic properties are consistent with the results obtained in the field of conditional Boolean algebras (Flaminio, Godo, Hosni 2020; Flaminio, Gilio, Godo, Sanfilippo 2023).

Given two conditional events A | H, B | K and a coherent probability assessment P(A | H) = x, P(B | K) = y, the conjunction $(A | H) \land (B | K)$ is defined as the following conditional random quantity $(A | H) \land (B | K) = (AHBK + xHBK + yAHK) | (H \lor K)$, where $z = \mathbb{P}((A | H) \land (B | K))$.

if
$$AHBK$$
 is true,
if $\overline{A}H \lor \overline{B}K$ is true,
if $\overline{H}BK$ is true,
if $AH\overline{K}$ is true,
if $\overline{H}\overline{K}$ is true,

What if we replace X = P(AIH) and Y = P(B|K) with two arbitrary a, b e [0,1]?

Definition

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

 $(A | H) \wedge_{a,b} (B | K) = (AHBK + a\overline{H}BK + bAH\overline{K}) | (H \lor K).$

That is

$$(A|H) \wedge_{a,b} (B|K) = (AHBK + a\overline{H}BK + bAH\overline{K})|(H \lor K) = \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false,} \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true,} \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void,} \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void,} \end{cases}$$

where $z = \mathbb{P}[(A | H) \wedge_{a,b} (B | K)].$

What if we replace X = P(AIH) and Y = P(BIK) with two arbitrary a, b e [-1]?

Definition (Brand new!)

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

 $(A | H) \wedge_{a,b} (B | K) = (AHBK + a\overline{H}BK + bAH\overline{K}) | (H \lor K).$

That is

$$(A|H) \wedge_{a,b} (B|K) = (AHBK + a\overline{H}BK + bAH\overline{K})|(H \vee K) = \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false,} \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true,} \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void,} \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void,} \end{cases}$$

where $z = \mathbb{P}[(A | H) \wedge_{a.b} (B | K)].$

What if we replace X = P(AIH) and Y = P(BIK) with two arbitrary a, b e [=1]?

Definition (Brand new!)

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events A | H and B | K as the following conditional random quantity

 $(A | H) \wedge_{a,b} (B | K) = (AHBK + a\overline{H}BK + bAH\overline{K}) | (H \lor K).$

That is

$$(A|H) \wedge_{a,b} (B|K) = (AHBK + a\overline{H}BK + bAH\overline{K})|(H \vee K) = \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false,} \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true,} \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void,} \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void,} \end{cases}$$

where $z = \mathbb{P}[(A | H) \wedge_{a,b} (B | K)].$

Do we still have all the classical properties of conjunction?

Definition (Brand new!)

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events A | H and B | K as the following conditional random quantity

 $(A | H) \wedge_{a,b} (B | K) = (AHBK + a\overline{H}BK + bAH\overline{K}) | (H \lor K).$

That is

$$(A|H) \wedge_{a,b} (B|K) = (AHBK + a\overline{H}BK + bAH\overline{K})|(H \vee K) = \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false,} \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true,} \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void,} \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void,} \end{cases}$$

where $z = \mathbb{P}[(A | H) \wedge_{a,b} (B | K)].$

Do we still have all the classical properties of conjunction?

Fréchet-Hoeffding bounds for the conjunction

 $[\max\{x + y - 1, 0\}, \min\{x, y\}]$

where x = P(A | H) and y = P(B | K).

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A \mid H, B \mid K, (A \mid H) \land_{a,b} (B \mid K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ and $z \in [z', z'']$, where

$$z' = \begin{cases} (x + y - 1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, \text{ if } x + y - 1 > 0\\ 0, \text{ otherwise;} \end{cases} z'' = \max\{z''_1, z''_2, \min\{z''_3, z''_4\}\},$$

where

 $z_1'' = \min\{x, y\},\$

$$z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x,y) \neq (1,1), \\ 1, & \text{if } (x,y) = (1,1), \end{cases}$$

$$z_{3}'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1-x}, \text{ if } x \neq 1, \\ 1, \text{ if } x = 1, \end{cases} \quad z_{4}'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, \text{ if } y \neq 1, \\ 1, \text{ if } y = 1. \end{cases}$$

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A \mid H, B \mid K, (A \mid H) \land_{a,b} (B \mid K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ and $z \in [z', z'']$, where

$$z' = \begin{cases} (x + y - 1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, \text{ if } x + y - 1 > 0\\ 0, \text{ otherwise;} \end{cases} z'' = \max\{z''_1, z''_2, \min\{z''_3, z''_4\}\},$$

where

 $z_1'' = \min\{x, y\},\$

$$z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x,y) \neq (1,1), \\ 1, & \text{if } (x,y) = (1,1), \end{cases}$$

$$z_{3}'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1-x}, \text{ if } x \neq 1, \\ 1, \text{ if } x = 1, \end{cases} \quad f x = 1, \\ z_{4}'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, \text{ if } y \neq 1, \\ 1, \text{ if } y = 1. \end{cases}$$

Case	<i>z</i> ′
(A): $x + y - 1 \le 0$	0
(B): $x + y - 1 > 0$	
Sub-cases:	
$(B.1):a \ge x \text{ and } b \ge y$	x + y -
$(B.2):a < x \text{ and } \frac{a}{x} \leq \frac{b}{y}$	$\frac{a}{x}(x+y-$
$(B.3):b < y \text{ and } \frac{b}{y} \leq \frac{a}{x}$	$\frac{b}{y}(x+y-$

Case	z"
(C)	
a(1-y) + b(1-x) > 1 - xy	$z_{2}'' = \frac{x(b-ay)+y(a)}{1-xy}$
(D)	
$a(1-y) + b(1-x) \le 1 - xy$	
Sub-cases:	
$x \le y \text{ and } a \le x$	$z_1^{\prime\prime} = x$
$x \leq y$ and $a > x$	$z_{3}'' = \frac{x(1-a)+y(a)}{1-x}$
$y < x \text{ and } b \leq y$	$z_1'' = y$
y < x and $b > y$	$z_4'' = \frac{x(b-y) + y(1)}{1-y}$

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A \mid H, B \mid K, (A \mid H) \land_{a,b} (B \mid K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ ar $z \in [z', z'']$, where

$$z' = \begin{cases} (x + y - 1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, \text{ if } x + y - 1 > 0\\ 0, \text{ otherwise;} \end{cases} z'' = \max\{z''_1, z''_2, \min\{z''_3, z''_4\}\},$$

where

 $z_1'' = \min\{x, y\},\$

$$z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x,y) \neq (1,1), \\ 1, & \text{if } (x,y) = (1,1), \end{cases}$$

$$z_{3}'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1-x}, \text{ if } x \neq 1, \\ 1, \text{ if } x = 1, \end{cases} \quad f x = 1, \\ z_{4}'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, \text{ if } y \neq 1, \\ 1, \text{ if } y = 1. \end{cases}$$

Case
$$z'$$
(A): $x + y - 1 \le 0$ 0(B): $x + y - 1 > 0$ Sub-cases: $(B.1): a \ge x$ and $b \ge y$ $x + y - 1$ $(B.2): a < x$ and $\frac{a}{x} \le \frac{b}{y}$ $\frac{a}{x}(x + y - 1)$ $(B.3): b < y$ and $\frac{b}{y} \le \frac{a}{x}$ $\frac{b}{y}(x + y - 1)$

Case
$$z''$$
(C) $a(1-y) + b(1-x) > 1 - xy$ $z''_{2} = \frac{x(b-ay)+y(a)}{1-xy}$ (D) $a(1-y) + b(1-x) \le 1 - xy$ Sub-cases. $x \le y$ and $a \le x$ $x \le y$ and $a \le x$ $y < x$ and $b \le y$ $y < x$ and $b \le y$ $y < x$ and $b > y$ $z''_{4} = \frac{x(b-y)+y(1)}{1-y}$

F-H bounds 5

nd	
	{
1 - 1) - 1)	
(-bx)	
<u>-x)</u>	4
<u>-b)</u>	

CASE a=X,b-Y

$$(a, b) = (x, y) = (0.6, 0.7)$$

 $\mathcal{M}' = (x, y, z') = (0.6, 0.7, 0)$
 $\mathcal{M}'' = (x, y, z'') = (0.6, 0.7, 0)$

 $CASE a \neq X, b \neq Y$

$$(a, b) = (0.9, 0.3) \neq (x, y)$$

 $\mathcal{M}'_{a,b} = (x, y, z') = (0.6, 0.7)$
 $\mathcal{M}''_{a,b} = (x, y, z'') = (0.6, 0.7)$

 $CASE a \neq X, b \neq Y$

$$(a, b) = (0.9, 0.3) \neq (x, y)$$

 $\mathcal{M}'_{a,b} = (x, y, z') = (0.6, 0.7)$
 $\mathcal{M}''_{a,b} = (x, y, z'') = (0.6, 0.7)$

What about specific values of a and b?

What about specific values of a and b? Can we find already known conjunctions?

Quasi conjunction: a=b=1

Quasi conjunction: a=b=1

(A H)	$\wedge_{1,1} (B K) =$	(AHB)	$K + \overline{H}E$	BK + AH	$I\bar{K}$
(1	$(\min),$	if $A H$	is true	and $B K$	is
	(lose),	if $A H$	is false	or $B K$ is	is :
$= \{ 1$	$(\min),$	if $A H$	is void	and $B K$	is
1	$(\min),$	if $A H$	is true	and $B K$	is
	((called off),	if $A H$	is void	and $B K$	is

where $z = \mathbb{P}[(A | H) \land_{1,1} (B | K)].$

$(H \lor K) =$ s true false, s true,

(Gilio 2012) **Lower and Upper bounds**

$$z'_S = \max\{x+y-1,0\}$$

$$z_S'' = \begin{cases} \frac{x + y - 2xy}{1 - xy}, & \text{if } (x, y) \neq (1, 1) \\ 1, & \text{if } (x, y) = (1, 1). \end{cases}$$

- s void,
- s void,

Quasi conjunction: a=b=1

 $(A|H) \wedge_{1,1} (B|K) = (AHBK + \overline{H}BK + AH\overline{K})|(H \lor K) =$ 1 (win), if A|H is true and B|K is true $0 \text{ (lose)}, \quad \text{if } A | H \text{ is false} \text{ or } B | K \text{ is false},$ $= \begin{cases} 1 \text{ (win)}, & \text{if } A | H \text{ is void and } B | K \text{ is true}, \\ 1 \text{ (win)}, & \text{if } A | H \text{ is true and } B | K \text{ is void}, \\ z \text{ (called off)}, & \text{if } A | H \text{ is void and } B | K \text{ is void}, \end{cases}$

where $z = \mathbb{P}[(A | H) \land_{1,1} (B | K)].$

generalised conjunction $(A|H) \wedge (L,L) (B|K) = (AHBK + HBK + AHR) | (HVK) = (A|H) \wedge (B|K) =$ $= \left[(A \vee H) \land (B \vee K) \right] (H \vee K)$

(Gilio 2012) **Lower and Upper bounds**

$$z'_S = \max\{x+y-1,0\}$$

$$z_S'' = \begin{cases} \frac{x+y-2xy}{1-xy}, \text{ if } (x,y) \neq (1,1)\\ 1, \text{ if } (x,y) = (1,1). \end{cases}$$

Sobocinsky conjunction (or quasi conjunction)

Imprecise Case

(a, b) = (0.9, 0.3)

Theorem:

Let A, B, H, K be any logically independent events and let $\mathscr{A} = ([x_1, x_2] \times [y_1, y_2])$ be an interval-valued assessment on $\{A \mid H, B \mid K\}$. Then, the interval of coherent extensions of \mathscr{A} to $(A \mid H) \wedge_{a,b} (B \mid K)$ is the interval $[z^*, z^{**}] = [z'(x_1, y_1), z''(x_2, y_2)]$, where

$$Z^{1}(X_{2},Y_{2}) = \begin{cases} (X_{2}+J_{2}-1) \cdot \min\{\frac{\alpha}{X_{2}}, \frac{b}{Y_{2}}, \frac{d}{Y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{2}}, \frac{d}{y_{1}}, \frac{d}{y_{1}},$$

$$\mathcal{L}^{"}(X_{2},J_{1}) = \max\{\mathcal{Z}_{2}^{"}(X_{2},J_{2}),\mathcal{Z}_{2}(X_{2},J_{2}),\min\{\mathcal{Z}_{3}^{"}(X_{2},J_{2}),\mathcal{Z}_{4}^{"}(X_{2}$$

$$\frac{2^{"}(x_{2},y_{2}) = \min\{2x_{2},y_{2}\}}{2^{"}(x_{2},y_{2}) = \binom{x_{2}(b-ay_{2}) + T_{2}(a-bx_{2})}{1 - x_{2}y_{2}}, \quad (f(x_{2},y_{2})) = \binom{x_{2}(b-ay_{2}) + T_{2}(a-bx_{2$$

$$\frac{2}{2} \left(x_{1}, y_{2} \right) = \begin{cases} \frac{x_{2} (\lambda - \alpha) + y_{2} (\alpha - x_{2})}{\lambda - x_{2}}, & \text{if } x_{2} + 1, \\ 1 - x_{2}, & \text{if } x_{2} = 1, \end{cases} \quad \frac{2}{4} \left(x_{1}, y_{2} \right) = \begin{cases} \frac{x_{2} (b - y_{2}) + y_{2} (\lambda - b)}{\lambda - y_{2}}, & \text{if } y_{2} + 1, \\ 1 - y_{2}, & \text{if } y_{2} = 1, \end{cases} \quad \frac{2}{4} \left(x_{1}, y_{2} \right) = \begin{cases} \frac{x_{2} (b - y_{2}) + y_{2} (\lambda - b)}{\lambda - y_{2}}, & \text{if } y_{2} + 1, \\ 1 - y_{2}, & \text{if } y_{2} = 1, \end{cases} \quad \frac{2}{4} \left(x_{1}, y_{2} \right) = \begin{cases} \frac{x_{2} (b - y_{2}) + y_{2} (\lambda - b)}{\lambda - y_{2}}, & \text{if } y_{2} + 1, \\ 1 - y_{2}, & \text{if } y_{2} = 1, \end{cases} \right)$$

Imprecise Case: the case $HK = \emptyset$

(a, b) = (0.9, 0.3)

Theorem:

Let $A \mid H, B \mid K$ two conditional events with $HK = \emptyset$. An interval-valued assessment $\mathscr{A} = ([x_1, x_2] \times [y_1, y_2])$ on $\mathscr{F} = \{A \mid H, B \mid K, (A \mid H) \land_{a,b} (B \mid K)\}$ is coherent if and only if $(x, y) \in [0,1]^2$ and $z \in [z^*, z^{**}]$, where

 $z^* = \min\{ay_1, bx_1\}$ and $z^{**} = \max\{ay_2, bx_2\}$.

A Generalized Notion of Conjunction for Two Conditional Events

Lydia Castronovo and Giuseppe Sanfilippo

Department of Mathematics and Computer Science, University of Palermo, Italy lydia.castronovo@unipa.it, giuseppe.sanfilippo@unipa.it

Abstract

Traditionally the conjunction of conditional events has been defined as a three-valued object. However, in this way classical logical and probabilistic properties are not preserved. In recent literature, the conjunction of two conditional events $(A|H) \wedge (B|K)$ defined as a five-valued object with set of possible values $\{1, 0, x, y, z\}$, where x = P(A|H), y = P(B|K), and $z = \mathbb{P}[(A|H) \wedge (B|K)]$ and satisfying classical probabilistic properties, has been deepened in the setting of coherence. In our paper we propose a generalization of this object, denoted by $(A|H) \wedge_{a,b} (B|K)$, where the values x and y are replaced by two arbitrary values $a, b \in [0, 1]$.

Preliminaries

Conditional events and random quantities

We denote by AH the conjunction of the events Aand H. A conditional event A|H, with $H \neq \emptyset$, is looked at as a three-valued logical entity

$$A|H = \begin{cases} \text{True (1),} & \text{if } AH \text{ is true,} \\ \text{False (0),} & \text{if } \bar{A}H \text{ is true,} \\ \text{Void, } (x) & \text{if } \bar{H} \text{ is true,} \end{cases}$$

where x = P(A|H). Given a random quantity X and an event $H \neq \emptyset$, we set

$$X|H = XH + \mathbb{P}(X|H)\overline{H}.$$

Definition 1 (Gilio & Sanfilippo 2014)

Given two conditional events A|H, B|K, with P(A|H) = x, P(B|K) = y, their conjunction is defined as $(A|H) \land (B|K) = (AHBK + x\overline{H}BK +$ $yAH\overline{K}$ $|(H \lor K),$ that is

$$(A|H) \land (B|K) = \begin{cases} 1, & \text{if } AHBK \text{ is true,} \\ 0, & \text{if } \bar{A}H \lor \bar{B}K \text{ is true,} \\ x, & \text{if } \bar{H}BK \text{ is true,} \\ y, & \text{if } AH\bar{K} \text{ is true,} \\ z, & \text{if } \bar{H}\bar{K} \text{ is true,} \end{cases}$$

where $z = \mathbb{P}[(A|H) \land (B|K)]$. By coherence $z \in [\max\{x + y - 1, 0\}, \min\{x, y\}]$ (F-H bounds).

Imprecise Case

Theorem 2

Let $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ be an interval-valued assessment on $\{A|H, B|K\}$. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is the interval $[z^*, z^{**}] = [z'(x_1, y_1), z''(x_2, y_2)]$, where z'(x, y) and z''(x, y) are defined in (1) and (2), resp.

The Case $HK = \emptyset$

Theorem 3 Let an interval-valued probability assessment $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ on $\{A|H, B|K\}$, with $HK = \emptyset$, be given. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is $[z^*, z^{**}] = [\min\{ay_1, bx_1\}, \max\{ay_2, bx_2\}].$

Definition 2

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0, 1]$, we define the generalized conjunction w.r.t. a and b of the conditional events A|H and B|K as the following conditional random quantity $(A|H) \wedge_{a,b} (B|K) = (AHBK + a\overline{H}BK + bAH\overline{K})|(H \lor K) =$

Main Result

if A|H is true and B|K is true 1 (win), if A|H is false or B|K is false, 0 (lose). a (partly win), if A|H is void and B|K is true, b (partly win), if A|H is true and B|K is void, z (called off), if A|H is void and B|K is void,

where $z = \mathbb{P}[(A|H) \wedge_{a,b} (B|K)].$

Theorem 1

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A|H, (B|K), (A|H) \land_{a,b} (B|K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ and $z \in [z', z'']$, where

$$z' = \begin{cases} (x+y-1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, & \text{if } x+y-1 > 0, \\ 0, & \text{otherwise} \end{cases}$$
(1)

and

$$z'' = \max\{z_1'', z_2'', \min\{z_3'', z_4''\}\},\$$

$${z_2', \min\{z_3'', z_4''\}},$$

(a, b) = (.9, .3), $\mathcal{M}'_{a,b} = (x, y, z') = (.6, .7, .129),$ $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .675)$

1,

(a, b) = (x, y) = (.6, .7),

 $\mathcal{M}' = (x, y, z') = (.6, .7, .3),$ $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .6)$

$$z_1'' = \min\{x, y\}, \quad z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x, y) \neq (1, 1), \\ 1, & \text{if } (x, y) = (1, 1), \end{cases}$$
$$z_3'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1, & \text{if } x = 1, \end{cases}, & \text{if } x \neq 1, \\ 1, & \text{if } x = 1, \end{cases}, \quad z_4'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, & \text{if } y \neq (1, 1), \\ \frac{x(1-a) + y(a-x)}{1-y}, & \text{if } y \neq (1, 1), \end{cases}$$

Further aspects

(2)

Remark. When we assess P(A|H) = x and P(B|K) = y, from definitions 1 and 2 it holds that

$$(A|H) \wedge_{x,y} (B|K) = (A|H) \wedge (B|K),$$

that is $(A|H) \wedge_{a,b} (B|K)$ reduces to $(A|H) \wedge (B|K)$ when a = x and b = y. Moreover, $\mathbb{P}[(A|H) \wedge_{x,y}(B|K)] = P(AHBK|(H \lor K)) + P(A|H)P(\bar{H}BK|(H \lor K)) + P(B|K)P(AH\bar{K}|(H \lor K)).$

Intepretation

Let us consider two individuals O and O'. Suppose that O' asserts P'(A|H) = a and P'(B|K) = b. Then,

$$(A|H) \wedge_{a,b} (B|K) \underbrace{\stackrel{\text{Def. 2}}{=}} (AHBK + a\bar{H}BK + bAH\bar{K}) | (H \lor K) \underbrace{\stackrel{\text{Def. 1}}{=}} (A|H) \wedge' (B|K),$$

where $(A|H) \wedge'(B|K)$ denotes the conjunction, as in Def.1, w.r.t. O'. Thus, $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)]$ satisfies the Fréchet-Hoeffding, that is:

 $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}'[(A|H) \wedge'(B|K)] \in [\max\{a+b-1,0\}, \min\{a,b\}].$

Now, suppose that O asserts P(A|H) = x and P(B|K) = y. Then, for the individual O, the lower and upper bounds z' and z'' on $(A|H) \wedge_{a,b} (B|K)$ computed by Theorem 1, represent the lower and upper bounds for the coherent extension $\mathbb{P}[(A|H) \wedge'(B|K)]$ of the assessment (x, y) on $\{A|H, B|K\}$. Therefore,

 $\mathbb{P}[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}[(A|H) \wedge'(B|K)] \neq \mathbb{P}[(A|H) \wedge (B|K)] = \mathbb{P}[(A|H) \wedge_{x,y} (B|K)].$

Come to visit our poster!

A Generalized Notion of Conjunction for Two Conditional Events

Lydia Castronovo and Giuseppe Sanfilippo

Department of Mathematics and Computer Science, University of Palermo, Italy lydia.castronovo@unipa.it, giuseppe.sanfilippo@unipa.it

Abstract

Traditionally the conjunction of conditional events has been defined as a *three-valued* object. However, in this way classical logical and probabilistic properties are not preserved. In recent literature, the conjunction of two conditional events $(A|H) \wedge (B|K)$ defined as a five-valued object with set of possible values $\{1, 0, x, y, z\}$, where x = P(A|H), y = P(B|K), and $z = \mathbb{P}[(A|H) \wedge (B|K)]$ and satisfying classical probabilistic properties, has been deepened in the setting of coherence. In our paper we propose a generalization of this object, denoted by $(A|H) \wedge_{a,b} (B|K)$, where the values x and y are replaced by two arbitrary values $a, b \in [0, 1]$.

Preliminaries

Conditional events and random quantities

We denote by AH the conjunction of the events Aand H. A conditional event A|H, with $H \neq \emptyset$, is looked at as a three-valued logical entity

$$A|H = \begin{cases} \text{True (1),} & \text{if } AH \text{ is true,} \\ \text{False (0),} & \text{if } \bar{A}H \text{ is true,} \\ \text{Void, } (x) & \text{if } \bar{H} \text{ is true,} \end{cases}$$

where x = P(A|H). Given a random quantity X and an event $H \neq \emptyset$, we set

$$X|H = XH + \mathbb{P}(X|H)\overline{H}.$$

Definition 1 (Gilio & Sanfilippo 2014)

Given two conditional events A|H, B|K, with P(A|H) = x, P(B|K) = y, their conjunction is defined as $(A|H) \wedge (B|K) = (AHBK + x\bar{H}BK + yAH\bar{K})|(H \lor K)$, that is

$$(A|H) \land (B|K) = \begin{cases} 1, & \text{if } AHBK \text{ is true,} \\ 0, & \text{if } \bar{A}H \lor \bar{B}K \text{ is true,} \\ x, & \text{if } \bar{H}BK \text{ is true,} \\ y, & \text{if } AH\bar{K} \text{ is true,} \\ z, & \text{if } \bar{H}\bar{K} \text{ is true,} \end{cases}$$

where $z = \mathbb{P}[(A|H) \land (B|K)]$. By coherence $z \in [\max\{x + y - 1, 0\}, \min\{x, y\}]$ (F-H bounds).

Imprecise Case

Theorem 2

Let $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ be an interval-valued assessment on $\{A|H, B|K\}$. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is the interval $[z^*, z^{**}] = [z'(x_1, y_1), z''(x_2, y_2)]$, where z'(x, y) and z''(x, y) are defined in (1) and (2), resp.

 $\mathcal{A} = [.5, .6] \times [.7, .8], [z^*, z^{**}] = [.086, .75]$

The Case $HK = \emptyset$

Theorem 3

Let an interval-valued probability assessment $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ on $\{A|H, B|K\}$, with $HK = \emptyset$, be given. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is $[z^*, z^{**}] = [\min\{ay_1, bx_1\}, \max\{ay_2, bx_2\}].$

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0, 1]$, we define the generalized conjunction w.r.t. a and b of the conditional events A|H and B|K as the following conditional random quantity $(A|H) \wedge_{a,b} (B|K) = (AHBK + a\bar{H}BK + bAH\bar{K})|(H \lor K) =$

Main Result

 $= \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false}, \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true}, \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void}, \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void}, \end{cases}$

where $z = \mathbb{P}[(A|H) \wedge_{a,b} (B|K)].$

Theorem 1

Definition 2

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A|H, (B|K), (A|H) \wedge_{a,b} (B|K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ and $z \in [z', z'']$, where

$$z' = \begin{cases} (x+y-1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, & \text{if } x+y-1 > 0, \\ 0, & \text{otherwise} \end{cases}$$
(1)

and

$$z'' = \max\{z_1'', z_2'', \min\{z_3'', z_4''\}\},\$$

(a, b) = (.9, .3), $\mathcal{M}'_{a,b} = (x, y, z') = (.6, .7, .129),$ $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .675)$

(a, b) = (x, y) = (.6, .7),

 $\mathcal{M}' = (x, y, z') = (.6, .7, .3),$

 $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .6)$

$$z_1'' = \min\{x, y\}, \quad z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x, y) \neq (1, 1), \\ 1, & \text{if } (x, y) = (1, 1), \end{cases}$$
$$z_3'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1, & \text{if } x = 1, \end{cases}, & \text{if } x \neq 1, \\ 1, & \text{if } x = 1, \end{cases}, \quad z_4'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, & \text{if } y \neq 1, \\ 1, & \text{if } y = 1. \end{cases}$$

Further aspects

Remark. When we assess P(A|H) = x and P(B|K) = y, from definitions 1 and 2 it holds that

$$(A|H) \wedge_{x,y} (B|K) = (A|H) \wedge (B|K),$$

that is $(A|H) \wedge_{a,b} (B|K)$ reduces to $(A|H) \wedge (B|K)$ when a = x and b = y. Moreover, $\mathbb{P}[(A|H) \wedge_{x,y} (B|K)] = P(AHBK|(H \vee K)) + P(A|H)P(\overline{H}BK|(H \vee K)) + P(B|K)P(AH\overline{K}|(H \vee K)).$

Intepretation

Let us consider two individuals O and O'. Suppose that O' asserts P'(A|H) = a and P'(B|K) = b. Then,

$$(A|H) \wedge_{a,b} (B|K) \stackrel{\text{Def. 2}}{\longleftarrow} (AHBK + a\bar{H}BK + bAH\bar{K})|(H \vee K) \stackrel{\text{Def. 1}}{\longleftarrow} (A|H) \wedge'(B|K),$$

where $(A|H) \wedge (B|K)$ denotes the conjunction, as in Def.1, w.r.t. O'. Thus, $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)]$ satisfies the Fréchet-Hoeffding, that is:

 $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}'[(A|H) \wedge'(B|K)] \in [\max\{a+b-1,0\}, \min\{a,b\}].$

Now, suppose that O asserts P(A|H) = x and P(B|K) = y. Then, for the individual O, the lower and upper bounds z' and z'' on $(A|H) \wedge_{a,b} (B|K)$ computed by Theorem 1, represent the lower and upper bounds for the coherent extension $\mathbb{P}[(A|H) \wedge'(B|K)]$ of the assessment (x, y) on $\{A|H, B|K\}$. Therefore,

 $\mathbb{P}[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}[(A|H) \wedge' (B|K)] \neq \mathbb{P}[(A|H) \wedge (B|K)] = \mathbb{P}[(A|H) \wedge_{x,y} (B|K)].$

ISIPTA 202W

A Generalized Notion of Conjunction for Two Conditional Events

Lydia Castronovo and Giuseppe Sanfilippo

Department of Mathematics and Computer Science, University of Palermo, Italy lydia.castronovo@unipa.it, giuseppe.sanfilippo@unipa.it

Abstract

Traditionally the conjunction of conditional events has been defined as a *three-valued* object. However, in this way classical logical and probabilistic properties are not preserved. In recent literature, the conjunction of two conditional events $(A|H) \wedge (B|K)$ defined as a five-valued object with set of possible values $\{1, 0, x, y, z\}$, where x = P(A|H), y = P(B|K), and $z = \mathbb{P}[(A|H) \wedge (B|K)]$ and satisfying classical probabilistic properties, has been deepened in the setting of coherence. In our paper we propose a generalization of this object, denoted by $(A|H) \wedge_{a,b} (B|K)$, where the values x and y are replaced by two arbitrary values $a, b \in [0, 1]$.

Preliminaries

Conditional events and random quantities

We denote by AH the conjunction of the events Aand H. A conditional event A|H, with $H \neq \emptyset$, is looked at as a three-valued logical entity

$$A|H = \begin{cases} \text{True (1),} & \text{if } AH \text{ is true,} \\ \text{False (0),} & \text{if } \bar{A}H \text{ is true,} \\ \text{Void, } (x) & \text{if } \bar{H} \text{ is true,} \end{cases}$$

where x = P(A|H). Given a random quantity X and an event $H \neq \emptyset$, we set

$$X|H = XH + \mathbb{P}(X|H)\overline{H}.$$

Definition 1 (Gilio & Sanfilippo 2014)

Given two conditional events A|H, B|K, with P(A|H) = x, P(B|K) = y, their conjunction is defined as $(A|H) \wedge (B|K) = (AHBK + x\bar{H}BK + yAH\bar{K})|(H \lor K)$, that is

$$(A|H) \land (B|K) = \begin{cases} 1, & \text{if } AHBK \text{ is true,} \\ 0, & \text{if } \bar{A}H \lor \bar{B}K \text{ is true,} \\ x, & \text{if } \bar{H}BK \text{ is true,} \\ y, & \text{if } AH\bar{K} \text{ is true,} \\ z, & \text{if } \bar{H}\bar{K} \text{ is true,} \end{cases}$$

where $z = \mathbb{P}[(A|H) \land (B|K)]$. By coherence $z \in [\max\{x + y - 1, 0\}, \min\{x, y\}]$ (F-H bounds).

Imprecise Case

Theorem 2

Let $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ be an interval-valued assessment on $\{A|H, B|K\}$. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is the interval $[z^*, z^{**}] = [z'(x_1, y_1), z''(x_2, y_2)]$, where z'(x, y) and z''(x, y) are defined in (1) and (2), resp.

 $\mathcal{A} = [.5, .6] \times [.7, .8], [z^*, z^{**}] = [.086, .75]$

The Case $HK = \emptyset$

Theorem 3

Let an interval-valued probability assessment $\mathcal{A} = ([x_1, x_2] \times [y_1, y_2])$ on $\{A|H, B|K\}$, with $HK = \emptyset$, be given. Then, the interval of coherent extensions of \mathcal{A} to $(A|H) \wedge_{a,b} (B|K)$ is $[z^*, z^{**}] = [\min\{ay_1, bx_1\}, \max\{ay_2, bx_2\}].$

Given four events A, B, H, K, with $H \neq \emptyset$ and $K \neq \emptyset$, and two values $a, b \in [0, 1]$, we define the generalized conjunction w.r.t. a and b of the conditional events A|H and B|K as the following conditional random quantity $(A|H) \wedge_{a,b} (B|K) = (AHBK + a\bar{H}BK + bAH\bar{K})|(H \lor K) =$

Main Result

 $= \begin{cases} 1 \text{ (win)}, & \text{if } A|H \text{ is true and } B|K \text{ is true} \\ 0 \text{ (lose)}, & \text{if } A|H \text{ is false or } B|K \text{ is false}, \\ a \text{ (partly win)}, & \text{if } A|H \text{ is void and } B|K \text{ is true}, \\ b \text{ (partly win)}, & \text{if } A|H \text{ is true and } B|K \text{ is void}, \\ z \text{ (called off)}, & \text{if } A|H \text{ is void and } B|K \text{ is void}, \end{cases}$

where $z = \mathbb{P}[(A|H) \wedge_{a,b} (B|K)].$

Theorem 1

Definition 2

Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M} = (x, y, z)$ on the family of conditional random quantities $\mathcal{F} = \{A|H, (B|K), (A|H) \wedge_{a,b} (B|K)\}$ is coherent if and only if $(x, y) \in [0, 1]^2$ and $z \in [z', z'']$, where

$$z' = \begin{cases} (x+y-1) \cdot \min\{\frac{a}{x}, \frac{b}{y}, 1\}, & \text{if } x+y-1 > 0, \\ 0, & \text{otherwise} \end{cases}$$
(1)

and

$$z'' = \max\{z_1'', z_2'', \min\{z_3'', z_4''\}\},\$$

(a, b) = (.9, .3), $\mathcal{M}'_{a,b} = (x, y, z') = (.6, .7, .129),$ $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .675)$

(a, b) = (x, y) = (.6, .7),

 $\mathcal{M}' = (x, y, z') = (.6, .7, .3),$ $\mathcal{M}''_{a,b} = (x, y, z'') = (.6, .7, .6)$

$$z_1'' = \min\{x, y\}, \quad z_2'' = \begin{cases} \frac{x(b-ay) + y(a-bx)}{1-xy}, & \text{if } (x, y) \neq (1, 1), \\ 1, & \text{if } (x, y) = (1, 1), \end{cases}$$
$$z_3'' = \begin{cases} \frac{x(1-a) + y(a-x)}{1-x}, & \text{if } x \neq 1, \\ 1, & \text{if } x = 1, \end{cases}, & z_4'' = \begin{cases} \frac{x(b-y) + y(1-b)}{1-y}, & \text{if } y \neq 1, \\ 1, & \text{if } y = 1. \end{cases}$$

Further aspects

Remark. When we assess P(A|H) = x and P(B|K) = y, from definitions 1 and 2 it holds that

$$(A|H) \wedge_{x,y} (B|K) = (A|H) \wedge (B|K),$$

that is $(A|H) \wedge_{a,b} (B|K)$ reduces to $(A|H) \wedge (B|K)$ when a = x and b = y. Moreover, $\mathbb{P}[(A|H) \wedge_{x,y} (B|K)] = P(AHBK|(H \vee K)) + P(A|H)P(\bar{H}BK|(H \vee K)) + P(B|K)P(AH\bar{K}|(H \vee K)).$

Intepretation

Let us consider two individuals O and O'. Suppose that O' asserts P'(A|H) = a and P'(B|K) = b. Then,

$$(A|H) \wedge_{a,b} (B|K) \stackrel{\text{Def. 2}}{=} (AHBK + a\bar{H}BK + bAH\bar{K})|(H \vee K) \stackrel{\text{Def. 1}}{=} (A|H) \wedge' (B|K)$$

where $(A|H) \wedge'(B|K)$ denotes the conjunction, as in Def.1, w.r.t. O'. Thus, $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)]$ satisfies the Fréchet-Hoeffding, that is:

 $\mathbb{P}'[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}'[(A|H) \wedge'(B|K)] \in [\max\{a+b-1,0\}, \min\{a,b\}].$

Now, suppose that O asserts P(A|H) = x and P(B|K) = y. Then, for the individual O, the lower and upper bounds z' and z'' on $(A|H) \wedge_{a,b} (B|K)$ computed by Theorem 1, represent the lower and upper bounds for the coherent extension $\mathbb{P}[(A|H) \wedge'(B|K)]$ of the assessment (x, y) on $\{A|H, B|K\}$. Therefore,

 $\mathbb{P}[(A|H) \wedge_{a,b} (B|K)] = \mathbb{P}[(A|H) \wedge' (B|K)] \neq \mathbb{P}[(A|H) \wedge (B|K)] = \mathbb{P}[(A|H) \wedge_{x,y} (B|K)].$

Thanks for Your attention

