ISIPTA 2023

A Generalized Notion of Conjunction for Two Conditional Events

Oviedo , July 13, 2023

ISIPTA 2023

A Generalized Notion of Conjunction for Two Conditional Events

ISIPTA 2023

A Generalized Notion of Conjunction for Two Conditional Events

YDIA GASTRONOVD GIUSEPPE SANFILIPPO

UNIVERSITY OF PALERMO, ITALY
Oviedo , July 13, 2023 !
hst year
PhD Student

Subjective Probability
Conditionals auditerated conditionals
knowledge represecetation
and much moe...
ISIPTA 2023
A Generalized Notion of Conjunction for Two Conditional Events
hst year Oviedo , July 13, 2023 ! PhD strident

Subjective Probability
Conditionals auditerated conditionals
knowledge representation
and much more..
SITA 2023
Conjunction for A Generalized Notion of
Two Conditional Events
YDIA GASTRONOV GIUSEPPE SANFILIPPO UNIVERSITY OF PALERMO, ITALY
hst year Oviedo , July 13, 2023 ! PhD student

Preliminaries

Definition

Given two events A and $H \neq \varnothing$, the conditional event $A \mid H$ is a three-valued logical entity which is True when $A H$ is true, False when $\bar{A} H$ is true and Void when \bar{H} is true.

Given two events A and $H \neq \varnothing$, the conditional event $A \mid H$ is a three-valued logical entity which is True when $A H$ is true, False when $\bar{A} H$ is true and Void when \bar{H} is true.

Preliminaries
Definition

$$
A \left\lvert\, H=\left\{\begin{array}{lll}
1 & A H & \\
0 & \frac{\pi}{H} & x=P(H \mid H) \\
x & H &
\end{array}\right.\right.
$$

Given two events A and $H \neq \varnothing$, the conditional event $A \mid H$ is a three-valued logical entity which is True when $A H$ is true, False when $\bar{A} H$ is true and Void when \bar{H} is true.

How to define the conjunction of conditional events? (i)

Preliminaries

$$
A \left\lvert\, H=\left\{\begin{array}{lll}
1 & A H \\
0 & \frac{\pi}{H} & x=P(A \mid H) \\
x & H
\end{array}\right.\right.
$$

Definition
Given two events A and $H \neq \varnothing$, the conditional event $A \mid H$ is a three-valued logical entity which is True when $A H$ is true, False when $\bar{A} H$ is true and Void when \bar{H} is true.

How to define the conjunction of conditional events?(©)

THREE-VALUED LOGICS
Kleene-de Finetti, Lukasiewicz, Bochvar, Sobocinski

Definition $\quad A \left\lvert\, H=\left\{\begin{array}{lll}1 & A H \\ 0 & \frac{A}{H} \\ x & \frac{H}{2}\end{array} \quad x=P(A \mid H)\right.\right.$
Given two events A and $H \neq \varnothing$, the conditional event $A \mid H$ is a three -valued logical entity which is True when $A H$ is true, False when $\bar{A} H$ is true and Void when \bar{H} is true.

How to define the conjunction of conditional events? (i)

Definition (McGee 1989, Gilio and Sanfilippo, 2014)
Given two conditional events $A|H, B| K$ and a coherent probability assessment $P(A \mid H)=x$, $P(B \mid K)=y$, the conjunction $(A \mid H) \wedge(B \mid K)$ is defined as the following conditional random quantity

$$
(A \mid H) \wedge(B \mid K)=(A H B K+x \bar{H} B K+y A H \bar{K}) \mid(H \vee K)
$$

Conjunction

Definition

Given two conditional events $A|H, B| K$ and a coherent probability assessment $P(A \mid H)=x, P(B \mid K)=y$, the conjunction $(A \mid H) \wedge(B \mid K)$ is defined as the following conditional random quantity $(A \mid H) \wedge(B \mid K)=(A H B K+x \bar{H} B K+y A H \bar{K}) \mid(H \vee K)$, where $z=\mathbb{P}((A \mid H) \wedge(B \mid K))$.

$$
(A \mid H) \wedge(B \mid K)= \begin{cases}1, & \text { if } A H B K \text { is true } \\ 0, & \text { if } \bar{A} H \vee \bar{B} K \text { is true } \\ x, & \text { if } \bar{H} B K \text { is true } \\ y, & \text { if } A H \bar{K} \text { is true } \\ z, & \text { if } \bar{H} \bar{K} \text { is true }\end{cases}
$$

Conjunction

Definition

Given two conditional events $A|H, B| K$ and a coherent probability assessment $P(A \mid H)=x, P(B \mid K)=y$, the conjunction $(A \mid H) \wedge(B \mid K)$ is defined as the following conditional random quantity $(A \mid H) \wedge(B \mid K)=(A H B K+x \overline{H B K}+y A H \bar{K}) \mid(H \vee K)$, where $z=\mathbb{P}((A \mid H) \wedge(B \mid K))$.

$$
(A \mid H) \wedge(B \mid K)= \begin{cases}1, & \text { if } A H B K \text { is true } \\ 0, & \text { if } \bar{A} H \vee \bar{B} K \text { is true } \\ x, & \text { if } \bar{H} B K \text { is true } \\ y, & \text { if } A H \bar{K} \text { is true } \\ z, & \text { if } \bar{H} \bar{K} \text { is true }\end{cases}
$$

र it's five-valued!

Conjunction

Definition
Given two conditional events $A|H, B| K$ and a coherent probability assessment $P(A \mid H)=x, P(B \mid K)=y$, the conjunction $(A \mid H) \wedge(B \mid K)$ is defined as the following conditional random quantity $(A \mid H) \wedge(B \mid K)=(A H B K+x \overline{H B K}+y A H \bar{K}) \mid(H \vee K)$, where $z=\mathbb{P}((A \mid H) \wedge(B \mid K))$.

$$
(A \mid H) \wedge(B \mid K)= \begin{cases}1, & \text { if } A H B K \text { is true } \\ 0, & \text { if } \bar{A} H \vee \bar{B} K \text { is true } \\ x, & \text { if } \bar{H} B K \text { is true } \\ y, & \text { if } A H \bar{K} \text { is true } \\ z, & \text { if } \bar{H} \bar{K} \text { is true }\end{cases}
$$

Satisfies all the logic ard probabilistic properties of conjunction!

Conjunction

Definition

Given two conditional events $A|H, B| K$ and a coherent probability assessment $P(A \mid H)=x, P(B \mid K)=y$, the conjunction $(A \mid H) \wedge(B \mid K)$ is defined as the following conditional random quantity $(A \mid H) \wedge(B \mid K)=(A H B K+x \bar{H} B K+y A H \bar{K}) \mid(H \vee K)$, where $z=\mathbb{P}((A \mid H) \wedge(B \mid K))$.

$$
(A \mid H) \wedge(B \mid K)= \begin{cases}1, & \text { if } A H B K \text { is true } \\ 0, & \text { if } \bar{A} H \vee \bar{B} K \text { is true } \\ x, & \text { if } \bar{H} B K \text { is true } \\ y, & \text { if } A H \bar{K} \text { is true } \\ z, & \text { if } \bar{H} \bar{K} \text { is true }\end{cases}
$$

satisfies all the
eosiciead ardabilistic
properties of conjunction!
\uparrow it's five-valued!

The probabilistic properties are consistent with the results obtained in the field of conditional Boolean algebras (Flaminio, Godo, Hosni 2020; Flaminio, Gilio, Godo, Sanfilippo 2023).

What if we replace $x=P(A \mid H)$ and $y=P(B \mid k)$ with two arbitrary $a, b \in[0,1]$?

Definition
Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

$$
(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)
$$

That is

$$
\begin{aligned}
& (A \mid H) \wedge a, b(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)= \\
& = \begin{cases}1 \text { (win) }, & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\
0 \text { (lose) }, & \text { if } A \mid H \text { is false or } B \mid K \text { is false, } \\
a \text { (partly win }), & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\
b \text { (partly win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\
z(\text { called off }), & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases} \\
& \text { where } z=\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right] .
\end{aligned}
$$

Definition [Brand newly]

Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

$$
(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)
$$

That is
$(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)=$
$= \begin{cases}1 \text { (win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\ 0 \text { (lose), } & \text { if } A \mid H \text { is false or } B \mid K \text { is false, } \\ a \text { (partly win), } & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\ b \text { (partly win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\ z \text { (called off), } & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases}$
where $z=\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]$.
prevision

What if we replace $x=P(A \mid H)$ and $y=P(B \mid k)$ with two arbitrary $a, b \in[0,1]$?

Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

$$
(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)
$$

That is

$$
\begin{aligned}
& (A \mid H) \wedge a, b(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)= \\
& = \begin{cases}1 \text { (win) }, & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\
0 \text { (lose) }, & \text { if } A \mid H \text { is false or } B \mid K \text { is false, } \\
a \text { (partly win }), & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\
b \text { (partly win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\
z(\text { called off }), & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases} \\
& \text { where } z=\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right] .
\end{aligned}
$$

Definition [Brand newl]

Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalized conjunction w.r.t. a and b of the conditional events $A \mid H$ and $B \mid K$ as the following conditional random quantity

$$
(A \mid H) \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)
$$

That is

$$
\begin{aligned}
& (A \mid H) \wedge \wedge_{a, b}(B \mid K)=(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K)= \\
& = \begin{cases}1 \text { (win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\
0 \text { (lose), } & \text { if } A \mid H \text { is false or } B \mid K \text { is false }, \\
a \text { (partly win), } & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\
b \text { (partly win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\
z \text { (called off), } & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases}
\end{aligned}
$$

$$
\text { where } z=\mathbb{P}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right] \text {. }
$$

\uparrow prevision

Fréchet-Hoeffding bounds for the conjunction

$$
[\max \{x+y-1,0\}, \min \{x, y\}]
$$

where $x=P(A \mid H)$ and $y=P(B \mid K)$.

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathscr{M}=(x, y, z)$ on the family of conditional random quantities $\mathscr{F}=\left\{A|H, B| K,(A \mid H) \wedge_{a, b}(B \mid K)\right\}$ is coherent if and only if $(x, y) \in[0,1]^{2}$ and $z \in\left[z^{\prime}, z^{\prime \prime}\right]$, where
$z^{\prime}=\left\{\begin{array}{l}(x+y-1) \cdot \min \left\{\frac{a}{x}, \frac{b}{y}, 1\right\}, \text { if } x+y-1>0 \\ 0, \text { otherwise; }\end{array} \quad z^{\prime \prime}=\max \left\{z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \min \left\{z_{3}^{\prime \prime}, z_{4}^{\prime \prime}\right\}\right\}\right.$, where
$z_{1}^{\prime \prime}=\min \{x, y\}$,

$$
z_{2}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x(b-a y)+y(a-b x)}{1-x y}, \text { if }(x, y) \neq(1,1), \\
1, \text { if }(x, y)=(1,1),
\end{array}\right.
$$

$z_{3}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(1-a)+y(a-x)}{1-x}, \text { if } x \neq 1, \\ 1, \text { if } x=1,\end{array} \quad z_{4}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(b-y)+y(1-b)}{1-y}, \text { if } y \neq 1, \\ 1, \text { if } y=1 .\end{array}\right.\right.$

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathscr{M}=(x, y, z)$ on the family of conditional random quantities $\mathscr{F}=\left\{A|H, B| K,(A \mid H) \wedge_{a, b}(B \mid K)\right\}$ is coherent if and only if $(x, y) \in[0,1]^{2}$ and $z \in\left[z^{\prime}, z^{\prime \prime}\right]$, where
$z^{\prime}=\left\{\begin{array}{l}(x+y-1) \cdot \min \left\{\frac{a}{x}, \frac{b}{y}, 1\right\}, \text { if } x+y-1>0 \\ 0, \text { otherwise; }\end{array} \quad z^{\prime \prime}=\max \left\{z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \min \left\{z_{3}^{\prime \prime}, z_{4}^{\prime \prime}\right\}\right\}\right.$,
where
$z_{1}^{\prime \prime}=\min \{x, y\}$,
$z_{3}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(1-a)+y(a-x)}{1-x}, \\ 1, \text { if } x \neq 1,\end{array}\right.$

$$
z_{2}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x(b-a y)+y(a-b x)}{1-x y}, \text { if }(x, y) \neq(1,1), \\
1, \text { if }(x, y)=(1,1),
\end{array}\right.
$$

$$
z_{4}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x(b-y)+y(1-b)}{1-y}, \text { if } y \neq 1, \\
1, \text { if } y=1 .
\end{array}\right.
$$

Theorem

Let A, B, H, K be any logically independent events. A prevision assessment $\mathscr{M}=(x, y, z)$ on the family of conditional random quantities $\mathscr{F}=\left\{A|H, B| K,(A \mid H) \wedge_{a, b}(B \mid K)\right\}$ is coherent if and only if $(x, y) \in[0,1]^{2}$ and $z \in\left[z^{\prime}, z^{\prime \prime}\right]$, where
$z^{\prime}=\left\{\begin{array}{l}(x+y-1) \cdot \min \left\{\frac{a}{x}, \frac{b}{y}, 1\right\}, \text { if } x+y-1>0 \\ 0, \text { otherwise; }\end{array} \quad z^{\prime \prime}=\max \left\{z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \min \left\{z_{3}^{\prime \prime}, z_{4}^{\prime \prime}\right\}\right\}\right.$,
where
$z_{1}^{\prime \prime}=\min \{x, y\}$,

$$
z_{2}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x(b-a y)+y(a-b x)}{1-x y}, \text { if }(x, y) \neq(1,1), \\
1, \text { if }(x, y)=(1,1),
\end{array}\right.
$$

$z_{3}^{\prime \prime}=\left\{\begin{array}{l}\frac{x(1-a)+y(a-x)}{1-x}, \\ 1, \text { if } x \neq 1,\end{array}\right.$

$$
z_{4}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x(b-y)+y(1-b)}{1-y}, \text { if } y \neq 1 \\
1, \text { if } y=1 .
\end{array}\right.
$$

Theorem (Convex-Hull of the points Q_{i})

Theorem (Convex-Hull of the points Q_{i})

CASE $a=x, b=y$

$$
\begin{aligned}
& (a, b)=(x, y)=(0.6,0.7) \\
& \mathscr{M}^{\prime}=\left(x, y, z^{\prime}\right)=(0.6,0.7,0.3) \\
& \mathscr{M}^{\prime \prime}=\left(x, y, z^{\prime \prime}\right)=(0.6,0.7,0.6)
\end{aligned}
$$

Theorem (Convex-Hull of the points Q_{i})

CASE $a \neq x, b+y$

$$
\begin{aligned}
(a, b) & =(0.9,0.3) \neq(x, y) \\
\mathscr{M}_{a, b}^{\prime} & =\left(x, y, z^{\prime}\right)=(0.6,0.7,0.129) \\
\mathscr{M}_{a, b}^{\prime} & =\left(x, y, z^{\prime \prime}\right)=(0.6,0.7,0.675)
\end{aligned}
$$

Theorem (Convex-Hull of the points Q_{i})

CASE $a \neq x, b+y$

$$
\begin{aligned}
& (a, b)=(0.9,0.3) \neq(x, y) \\
& \mathscr{M}_{a, b}=\left(x, y, z^{\prime}\right)=(0.6,0.7,0.129) \\
& \mathscr{M}_{a, b}^{\prime}=\left(x, y, z^{\prime \prime}\right)=(0.6,0.7,0.675)
\end{aligned}
$$

What about specific values of a and b ?

What about specific values of a and b ?

Can we find already known conjunctions?

Quasi conjunction: $a=b=1$

Quasi conjunction: $\mathrm{a}=\mathrm{b}=1$

$(A \mid H) \wedge_{1,1}(B \mid K)=(A H B K+\bar{H} B K+A H \bar{K}) \mid(H \vee K)=$

$$
\text { if } A \mid H \text { is void and } B \mid K \text { is true, }
$$

$$
\text { if } A \mid H \text { is true and } B \mid K \text { is void, }
$$

$$
z \text { (called off), if } A \mid H \text { is void and } B \mid K \text { is void, }
$$

where $z=\mathbb{P}\left[(A \mid H) \wedge_{1,1}(B \mid K)\right]$.

$$
\text { where } z=\mathbb{P}\left[(A \mid H) \wedge_{1,1}(B \mid K)\right] \text {. }
$$

(Gilio 2012)
Lower and Upper bounds

$$
\begin{gathered}
z_{S}^{\prime}=\max \{x+y-1,0\} \\
z_{S}^{\prime \prime}=\left\{\begin{array}{l}
\frac{x+y-2 x y}{1-x y}, \text { if }(x, y) \neq(1,1) \\
1, \text { if }(x, y)=(1,1) .
\end{array}\right.
\end{gathered}
$$

Quasi conjunction: $a=b=1$

$$
\begin{aligned}
& (A \mid H) \wedge_{1,1}(B \mid K)=(A H B K+\bar{H} B K+A H \bar{K}) \mid(H \vee K)= \\
& = \begin{cases}1(\text { win }), & \text { if } A \mid H \text { is true and } B \mid K \text { is true } \\
0(\text { lose }), & \text { if } A \mid H \text { is false } \mid \text { or } B \mid K \text { is false, } \\
1 \text { (win), } & \text { if } A \mid H \text { is void and } B \mid K \text { is true, } \\
1 \text { (win), } & \text { if } A \mid H \text { is true and } B \mid K \text { is void, } \\
z(\text { called off }), & \text { if } A \mid H \text { is void and } B \mid K \text { is void, }\end{cases}
\end{aligned}
$$

where $z=\mathbb{P}\left[(A \mid H) \wedge_{1,1}(B \mid K)\right]$.
generalised conjunction

$$
\begin{aligned}
& (A|H| \wedge(1,1)(B \mid K)=(A H B K+\overline{H B K}+A H \bar{K}) \mid(H \vee K)= \\
& =[(A \vee \bar{H}) \wedge(B \vee \bar{K})] /(H V K) \quad \underbrace{(A \mid H) \wedge_{S}(B \mid K)}_{\text {Sobocinsky conjunction }}= \\
& \\
& \text { (or quasi conjunction) }
\end{aligned}
$$

Imprecise Case

$$
(a, b)=(0.9,0.3)
$$

Theorem:

Let A, B, H, K be any logically independent events and let $\mathscr{A}=\left(\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right)$ be an interval-valued assessment on $\{A|H, B| K\}$. Then, the interval of coherent extensions of \mathscr{A} to $(A \mid H) \wedge_{a, b}(B \mid K)$ is the interval
$\left[z^{*}, z^{* *}\right]=\left[z^{\prime}\left(x_{1}, y_{1}\right), z^{\prime \prime}\left(x_{2}, y_{2}\right)\right]$, where
$z^{\prime}\left(x_{1}, y_{2}\right)=\left\{\begin{aligned}\left(x_{2}+y_{2}-1\right) \cdot \min \left\{\frac{a}{x_{1}}, \frac{b}{y_{2}} 11\right\}, & \text { if } x_{1}+y_{1}-1>0, \\ 0, & \text { otherwise, }\end{aligned}\right.$
$z^{\prime \prime}\left(x_{2}, y_{2}\right)=\max \left\{z_{2}^{\prime \prime}\left(x_{2}, y_{2}\right), z_{2}^{\prime \prime}\left(x_{2}, y_{2}\right), \min \left\{z_{3}^{\prime \prime}\left(x_{2}, y_{2}\right), z_{k}^{\prime \prime}\left(x_{2}, y_{2}\right)\right\}_{1}\right.$
where
where
$z_{1}^{\prime \prime}\left(x_{2}, y_{2}\right)=\min \left\{x_{2}, y_{2}\right\}_{1} \quad z_{2}^{\prime \prime}\left(x_{2}, y_{2}\right)= \begin{cases}\frac{x_{2}\left(b-a y_{2}\right)+y_{2}\left(a-b x_{2}\right)}{1-x_{2} y_{2}}, & \text { if }\left(x_{1}, y_{2}\right) \neq(1,1), \\ 1, & \text { if }\left(x_{2}, y_{2}\right) \neq(1,1),\end{cases}$ $z_{3}^{\prime \prime}\left(x_{1}, y_{2}\right)=\left\{\begin{array}{ll}\frac{x_{2}(1-a)+y_{2}\left(a-x_{2}\right)}{1-x_{2}}, & \text { if } x_{2}+1_{1} \\ 1 & , \text { if } x_{2}=1,\end{array} \quad z_{4}^{\prime \prime}\left(x_{2}, y_{2}\right)= \begin{cases}\frac{x_{2}\left(b-y_{2}\right)+y_{2}(1-b)}{1-y_{2}}, & \text { if } y_{2}+1, \\ 1 & \text { if } y_{2}=1 .\end{cases}\right.$

Imprecise Case: the case $H K=\varnothing$

Theorem:

Let $A|H, B| K$ two conditional events with $H K=\varnothing$. An interval-valued assessment $\mathscr{A}=\left(\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right)$ on
$\mathscr{F}=\left\{A|H, B| K,(A \mid H) \wedge_{a, b}(B \mid K)\right\}$ is coherent if and only if $(x, y) \in[0,1]^{2}$ and $z \in\left[z^{*}, z^{* *}\right]$, where
$z^{*}=\min \left\{a y_{1}, b x_{1}\right\}$ and $z^{* *}=\max \left\{a y_{2}, b x_{2}\right\}$.

$$
(a, b)=(0.9,0.3)
$$

	rac
Preliminaries	Main Resul
ditional events and randon	Definition 2Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and
True (1), if	following conditional random quantity
2mat $X \mid H=X H+\mathbb{P}(X \mid H) \bar{H}$	
Defnition 1 (Gilio \& Sunflippo 2014)	where $z=\mathbb{P}(A A \mid H) \wedge_{a, b}(B \mid K)$.
	orem 1
	Let A, B, H, K be any logically independent events. A prevision assessment $\mathcal{M}=(x, y, z)$ on the family of conditional
, 1 , if $A H B K$ is true.	
	$z^{\prime}=\left\{\begin{array}{l} (x+y-1) \cdot \min \left\{\frac{\{ }{x}, \frac{b}{y}, 1\right\}, \begin{array}{c} \text { if } x+y-1>0, \\ \text { otherwise } \end{array} \\ 0, \end{array} \quad\right. \text { (1) }$
(a)	, (y, *1)
Imprecise Case	
Theorem 2	
	Further aspects
	Remark. When we assess $P(A \mid H)=x$ and $P(B \mid K)=y$, from definitions 1 and 2 it holds that $(A \mid H) \wedge x, y(B \mid K)=(A \mid H) \wedge(B \mid K)$,
$\underline{A}=[5.6] \times[7,7,8],\left[z^{*}, z^{* *}\right]=[.086,75]$	Int
The Case $H K=\varnothing$	$(A \mid H) \wedge A, b(B \mid K) \stackrel{\text { Def } 2}{\Rightarrow}(A H B K+a \bar{H} B K+b A H \bar{K}) \mid(H \vee K) \stackrel{\text { Def } 1}{=}(A \mid H) \wedge^{\prime}(B \mid K),$
	where $(A \mid H) \wedge^{\prime}(B \mid K)$ denotes the conjunction, as in Def.1, w.r.t. O^{\prime}. Thus, $\mathbb{P}^{\prime}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]$ satisfies the Fréchet-Hoeffding, that is:$\mathbb{P}^{\prime}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]=\mathbb{P}^{\prime}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right] \in[\max \{a+b-1,0\}, \min \{a, b\}] .$
	 Ho coleremenemen

 Intepretation $(A \mid H) \Lambda_{a, b}(B \mid K) \stackrel{\text { Dot }}{=}(A H B K+a \bar{H} B K+b A H \bar{K})(H \vee K) \stackrel{\text { Dat }}{=}(A \mid H)^{\prime}(B \mid K)$,

Come bo visit our posker!

A Generalized Notion of Conjunction for Two Conditional Events

Abstract		
Preliminaries	Main Result	
Conditional events and ran	Definition 2	
 looked at as a three-valued logical entity	Given four events A, B, H, K, with $H \neq \varnothing$ and $K \neq \varnothing$, and two values $a, b \in[0,1]$, we define the generalizeace conjunaction w.r.t. a and b ondions random quantityfollowitional	
(1).		
where $x=P(A \mid H)$. Given a random quantity x		
and an event $H \neq \varnothing$, we set $X \mid H=X H+\mathbb{P}(X \mid H) \overline{\bar{H}} .$		
ition 1		
Given two conditional events $A\|H, B\| K$, with $P(A \mid H)=x, P(B \mid K)=y$, their conjunction is	Theorem 1	
	$z^{\prime}=\left\{\begin{array}{l} (x+y-1) \cdot \min \left\{\frac{2}{x}, \frac{b}{y}, 1\right\}, \begin{array}{c} \text { if } x+y-1>0, \\ \text { otherwise } \end{array} \\ 0, \end{array}\right.$	
where $z=\mathbb{P}[(A \mid H) \wedge(B \mid K)]$. By coherence $z \in[\max \{x+y-1,0\}, \min \{x, y\}]$ (F-H bounds)		
Imprecise Case	wh	
Theorem 2		
	$z_{1}^{\prime \prime}=\min \{x, y\}, \quad z_{2}^{\prime \prime}=\left\{\begin{array}{l} \frac{x(b-a y)+y(a-b x)}{1,}, \text { if }(x, y) \neq(1,1), \\ 1, \text { if }(x, y)=(1,1), \end{array}\right.$	
interval $\left[z^{*}, z^{* * *}\right]=\left[z^{\prime}\left(x_{1}, y_{1}\right), z^{\prime \prime}\left(x_{2}, y_{2}\right)\right]$, wi, $z^{\prime}(x, y)$ and $z^{\prime \prime}(x, y)$ arc definced in (1) and (2),		
	Further aspects	
	Remark. When we asseses $P(A \\| I I)=x$ and $P(B \mid K)=y$, from definitions 1 and 2 it holds that $(A \mid H) A \pm \sim(B \mid K)=(A \mid H) \wedge(B \mid K)$,	
	Intepretation	
The Case $H K=\varnothing$	Let us consider two individuals O and O^{\prime}. Suppose that O^{\prime} asserts $P^{\prime}(A \mid H)=a$ and $P^{\prime}(B \mid K)=b$. Then, $(A \mid H))_{A a, b}(B \mid K) \stackrel{\text { Dat }}{=}(A H B K+a \tilde{H} B K+b A H \bar{K})(H \vee K) \stackrel{\text { Df }}{=}(A \mid H)^{\prime}(B \mid K),$	
	where $(A \mid H) \wedge^{\prime}(B \mid K)$ denotes the conjunction, as in Def.1, w.r.t. O^{\prime}. Thus, $\mathbb{P}^{\prime}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]$ satisfies the Fréchet-Hoeffding, that is: $\mathbb{P}^{\prime}\left[(A \mid H) \wedge_{a, b}(B \mid K)\right]=\mathbb{P}^{\prime}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right] \in[\max \{a+b-1,0\}, \min \{a, b\}] .$	
	Now, suppose that O as bounds z^{\prime} and $z^{\prime \prime}$ on $(A \mid H) \wedge(A, b\|B\| K)$ computed by Theorem 1, represent the lower and upper bounds for the coherent extension $\mathbb{P}\left(A\|H\rangle A^{\prime}(B \mid K) \mid\right.$ of the assessment (x, y) on $\{A\|H, B\| K\}$. Therefore, on $\{A H, B \mid K\}$. Therefore, $\mathbb{P}\left[(A \mid H) \wedge_{a, b}(\beta \mid K)\right]=\mathbb{P}\left[(A \mid H) \wedge^{\prime}(B \mid K)\right] \neq \mathbb{P}[(A \mid H) \wedge(B \mid K)]=\mathbb{P}\left[(A \mid H) \wedge_{x, y}(B \mid K)\right]$.	

Come to visit our poster!

Thanks for your attention!

