Finite sample valid probabilistic inference on quantile regression

Leonardo Cella lcella@wfu.edu

1- Introduction

Data $Z^{n}=\left\{Z_{i}=\left(X_{i}, Y_{i}\right): i=1, \ldots, n\right\}$ of n covariates-response pairs are iid with distribution P . Nothing is assumed about P .

- $Q_{x}(\tau)=x^{\top} \theta$ is the τ-th quantile of Y given $X=x$.
- Goal: make inferences on θ that are distribution-free and valid.
- Common solution: Inferences through confidence regions
- Notion of validity is familiar \rightarrow coverage guarantees:

$$
\begin{equation*}
\sup _{P} P^{n}\left\{C_{\alpha}\left(Z^{n}\right) \not \supset \theta(P)\right\} \leq \alpha, \quad \alpha \in[0,1] . \tag{1}
\end{equation*}
$$

2 - Probabilistic Inference

Beyond confidence regions, where we can assign degrees of belief Π to relevant assertions about θ, e.g., $\theta \in A, A \subseteq \Theta$.

- Validity: control the assignment of high degrees of belief to false assertions:

$$
\begin{equation*}
\sup _{P: \theta(P) \notin A} P^{n}\left\{\Pi_{Z^{n}}(A)>1-\alpha\right\} \leq \alpha, \quad \alpha \in[0,1] . \tag{2}
\end{equation*}
$$

- Bayesian approach? False Confidence Theorem says we need imprecision!

3 - Inferential Models

Consider the parametric case where $Z^{n}=\left(Z_{1}, \ldots Z_{n}\right)$ are iid with distribution P_{ω}. IM approach [2] offers valid probabilistic inference for ω.

Two-step IM construction

1. Choose an appropriate $h:\left(\mathbb{Z}^{n} \times \Omega\right) \rightarrow \mathbb{R}$ that determines a partial ordering of candidate values for ω given z^{n}, e.g.,likelihood ratio:

$$
h\left(z^{n}, \omega\right)=L_{z^{n}}(\omega) / L_{z^{n}}\left(\hat{\omega}_{z^{n}}\right)
$$

2. Compute the possibility contour

$$
\pi_{z^{n}}(\omega)=P_{\omega}^{n}\left\{h\left(Z^{n}, \omega\right) \leq h\left(z^{n}, \omega\right)\right\}
$$

$\pi \rightarrow$ valid probabilistic inference and confidence regions for ω

4 - Nonparametric IM for quantile regression

The idea here is to mimic the construction above:

1. Choose an h that orders candidate values for θ given z^{n}
2. Compute the contour

$$
\begin{equation*}
\pi_{z^{n}}(\theta)=P^{n}\left\{h\left(Z^{n}, \theta\right) \leq h\left(z^{n}, \theta\right)\right\}, \quad \theta \in \Theta \tag{3}
\end{equation*}
$$

Theorem:

- The degrees of belief obtained from (3) are valid in the sense of (2).
- $\left\{\theta \in \Theta: \pi_{z^{n}}(\theta)>\alpha\right\}$ is a valid confidence region in the sense of (1).

Challenges:

1. What h ? No model \rightarrow no likelihood ratio.
2. How to compute (3)? Recall that P is unknown.

A possible solution

- In [1], a bootstrap-based IM construction was proposed
- validity is just achieved asymptotically

But we want more! \rightarrow IM that achieves validity for any sample size
Strategy: Choose an h whose distribution is known and independent of unknown quantities, so (3) can be computed! More specifically:

- Find $\gamma\left(\theta, z^{n}\right)$ that is a pivot
- $\mathrm{h} \rightarrow \gamma^{\prime}$'s probability mass

4.1 - An intuitive (but bad) solution

- $\gamma=\sum_{i=1}^{n} I_{(0, \infty)}\left(Y_{i}-x_{i}^{\top} \theta\right) \rightarrow \gamma \sim \operatorname{Bin}(n, 1-\tau) \rightarrow h=\binom{n}{\gamma}(1-\tau)^{\gamma} \tau^{n-\gamma}$
- Very inefficient! For example, for $\tau=0.5$, any line that splits the data in half, e.g., the black, red and blue below, is equally maximally plausible.

4.2-A better solution

Let X be discrete with k levels. The idea is to consider the binomials for each level of X separately, and have h as the product of their probability masses.

$$
\begin{equation*}
h=\prod_{i=1}^{k}\binom{n_{i}}{\gamma_{i}}(1-\tau)^{\gamma_{i}} \tau^{n_{i}-\gamma_{i}}, \text { where } \quad \gamma_{i}=\sum_{j=1}^{n_{i}} I_{(0, \infty)}\left(Y_{j}-x_{i} \theta\right) \tag{4}
\end{equation*}
$$

Example: $\mathrm{k}=3, n_{1}=n_{2}=n_{3}=10, \tau=0.5$:

$$
\text { Figure 1: Data set on the left. } 95 \% \text { confidence region for } \theta \text { on the right. }
$$

If X is continuous, there is no replication of Y for any given $X=x$. But we do have replications of Y in neighborhoods of X, so (4) can still be used!

- Form k neighborhoods of X
- Consider each one of the k independent binomials separately
- Use the product of their probability masses as the plausibility order h

Example: Simulation study with $n=30, \tau=0.3$ and $k=2$ to compare the coverage probabilities and mean length of 95% interval estimates for the quantile regression coefficients based on the IM and two other methods:

θ	IM	Rank	Bayes
θ_{0}	$0.99(1.11)$	$0.88(0.43)$	$0.96(0.44)$
θ_{1}	$0.98(0.48)$	$0.83(0.19)$	$0.88(0.18)$

5 - Open questions

Other pivot options? How to best select the neighborhoods of a continuous X ? Specifically, does the number of neighborhoods and/or the number of replications per neighborhood impact the efficiency of the IM?

References

[1] L. Cella and R. Martin. Direct and approximately valid probabilistic inference on a class of statistical functionals. International Journal of Approximate Reasoning, 151:205-224, 2022.
[2] R. Martin and C. Liu. Inferential Models: Reasoning with Uncertainty. Monographs in Statistics and Applied Probability Series. Chapman \& Hall/CRC Press, 2015.

