A modal logic for uncertainty: a completeness theorem

Esther Anna Corsi¹, Tommaso Flaminio², Lluís Godo², and Hykel Hosni¹

¹Department of Philosophy, University of Milan, Italy ²Artificial Intelligence Research Institute (IIIA-CSIC), UAB, Spain

 $(\Box 1) \Box \varphi \to \varphi;$ $(\Box 2) \Box (\psi \to \varphi) \to (\psi \to \Box \varphi);$ $(\Box 3) \Box (\psi \lor \varphi) \to (\psi \lor \Box \varphi);$ $(\Diamond 1) \Diamond (\varphi \& \varphi) \equiv \Diamond \varphi \& \Diamond \varphi;$

+ MP and $(N\Box)$

 \mathscr{L} : language of Łukasiewicz logic over finitely many (say n) propositional variables. $\mathscr{L}_{\square,P}$: the expansion of \mathscr{L} by two additional unary modalities: \square and P.

CF: The set of *classical formulas*. Those are definable in \mathscr{L} from variables, constants \top and \bot , and the connectives \land , \lor , \neg .

Ex: $\varphi, \psi, \varphi \wedge \psi$ **CMF**: The set of *classical modal formulas* is defined by closing **CF** by the unary modality \square as usual in a modal language.

S5 Probability Models

An *S5 probability model* is a tuple

 $\mathcal{U} = (W, R, \{e_w\}_{w \in W}, \{p_w\}_{w \in W})$

1. $(W, R, \{e_w\}_{w \in W})$ is a classical S5-Kripke model;

2. For all $w \in W$, p_w is a probability distribution on W and μ_w the probability function on 2^W induced by p_w .

(1) If $\varphi \in \mathbf{CF}$, then $\|\varphi\|_{\mathcal{U},w} = e_w(\varphi)$;

(2) If $\varphi \in \mathbf{CMF}$, then whenever $\varphi = \Box \psi$ we have

 $\|\varphi\|_{\mathcal{U},w} = \|\Box\psi\|_{\mathcal{U},w} = \inf\{\|\psi\|_{\mathcal{U},w'} \mid wRw'\}.$

If φ is compound, then $\|\varphi\|_{\mathcal{U},w}$ is computed by truth-functionality using classical connectives.

Ex: $\Box \varphi, \varphi \to \Box \psi, \Box \varphi \land \Diamond \psi, \Box (\Box \varphi \land \Diamond \psi)$

PMF: The set of *probabilistic modal formulas* is obtained by the following two steps:

1. Atomic probabilistic formulas are all those in the form $P(\varphi)$ for $\varphi \in CMF$;

Ex: $P(\varphi \rightarrow \Box \psi)$

2. Compound probabilistic formulas are defined by composing atomic ones with connectives of the Łukasiewicz language.

Ex: $P(\varphi) \to P(\Box \psi)$

UMF: Finally, the set of *uncertainty modal formulas* is the smallest set of formulas that contains **PMF** and is closed under \square and connectives of Łukasiewicz logic.

Ex: $\Box P(\varphi), \Box P(\varphi) \to P(\Diamond \psi), \Box (P(\varphi) \to P(\Diamond \psi)), \Box (\Box P(\varphi) \to P(\Diamond \psi))$

LF: the set of *lower probability formulas* is the smallest subset of **UMF** that contains all basic formulas of the form $\Box P(\varphi)$ for every classical formula φ and that is closed under Łukasiewicz connectives.

Ex: $\Box P \varphi \rightarrow \Box P \psi$ or $\neg \Box P \varphi$

Example

p, q, r: three propositional variables

(3) If $\varphi \in \mathbf{PMF}$ and φ is atomic, i.e., $\varphi = P(\psi)$ with $\psi \in \mathbf{CMF}$, then

 $\|\varphi\|_{\mathcal{U},w} = \|P(\psi)\|_{\mathcal{U},w} = \sum \{p_w(w') \mid \|\psi\|_{\mathcal{U},w'} = 1\}.$

If $\varphi \in \mathbf{PMF}$ and is compound, then its truth-value is computed by truth-functionality using Łukasiewicz connectives.

(4) If $\varphi \in \mathbf{UMF}$ and $\varphi = \Box \psi$, and thus with $\psi \in \mathbf{PMF}$, then

 $\|\varphi\|_{\mathcal{U},w} = \|\Box\psi\|_{\mathcal{U},w} = \inf\{\|\psi\|_{\mathcal{U},w'} \mid wRw'\}.$ Ex: $\|\Box P(\psi)\|_{\mathcal{U},w} = \inf\{\|P(\psi)\|_{\mathcal{U},w'} \mid wRw'\} = \inf\{\mu_{w'}(\{w^* \in W \mid \|\psi\|_{\mathcal{U},w^*} = 1\}) \mid wRw'\}$

System S5(FP(Ł))

(CPL) The axioms and rules of classical propositional logic for formulas in CF. (S5) The axioms of S5 applied to CMF. (**FP(** \pounds)) Axioms and rules of FP(\pounds) for **PMF** formulas, i.e. the axioms of \pounds the axioms for the modality P and Łukasiewicz implication:

> $(P1) P(\varphi \to \psi) \to (P(\varphi) \to P(\psi));$ $(P2) \neg P(\varphi) \equiv P(\neg \varphi);$ $(P3) \ P(\varphi \lor \psi) \equiv [(P(\varphi) \to P(\varphi \land \psi)) \to P(\psi)];$ (NP) necessitation: from φ infer $P(\varphi)$.

 $(S5(\ell))$ Axioms and rules of $S5(\ell)$ for **UMF** formulas.

Lower Probability Model

 $\|P(\Box\varphi)\|_{\mathcal{U},w_i} = p_i(w_4) + p_i(w_5)$ for all i = 1, ..., 5,

 $\|\Box P(\varphi)\|_{\mathcal{U},w_1} = \min\{\|P(\varphi)\|_{\mathcal{U},w_1}, \|P(\varphi)\|_{\mathcal{U},w_2}, \|P(\varphi)\|_{\mathcal{U},w_3}\} = \min\{4/5, 2/3, 3/4\} = 2/3$

	w_1	w_2	w_3	w_4	w_5
$\boxed{\ P(\varphi)\ _{\mathcal{U},w_i}}$	4/5	2/3	3/4	2/3	3/4
$\ \Box \varphi\ _{\mathcal{U},w_i}$	0	0	0	1	1
$P(\Box \varphi) \ _{\mathcal{U}, w_i}$	2/5	0	1/2	2/3	1/2
$\square P(\varphi) \ _{\mathcal{U}, w_i}$	2/3	2/3	2/3	2/3	2/3

 $\mathcal{M} = (W, \{e_w\}_{w \in W}, \underline{P})$

<u>*P*</u>: lower probability on 2^W .

 $\|\Box P(\varphi)\|_P = \underline{P}(\{w \mid e_w(\varphi) = 1\})$

the evaluation extends to compound formulas in **LF** by truth-functionality using Łukasiewicz connectives.

Completeness Theorem

For every finite subset of formulas $T \cup \phi \subseteq (\mathbf{LF})$, the following conditions are equivalent:

(i) $T \vdash_{S5(FP(\texttt{k}))} \phi$

(ii) for all finite (universal) S5 probability model $\mathcal{U} = (W, R, \{e_w\}_{w \in W}, \{\mu_w\}_{w \in W})$ with $R = W \times W$, $\|\tau\|_{\mathcal{U}} = 1$ for each $\tau \in T$ implies $\|\phi\|_{\mathcal{U}} = 1$.

(iii) for all finite lower probability model $(W, \{e_w\}_{w \in W}, \underline{P})$, $\|\tau\|_{\underline{P}} = 1$ for each $\tau \in T$ implies $\|\phi\|_{\underline{P}} = 1$.