Removing Redundancies for Faster Inference

 $D=\{d_1,...,d_m\}\subset \mathbb{R}^\mathscr{X}\sim \mathbb{R}^n$ desirable gambles positive = uninformative = removable

How to remove more redundancies?

 $g \in \text{natural extension } \mathscr{E}(D)$ $g \neq 0$ and $\exists \lambda_1 \geq 0, \ldots, \lambda_m \geq 0$

→ linear programming

What do the E-vectors represent when interpreted as maps from \mathscr{X} to \mathbb{R} ?

Dual Description

If $d \in \mathcal{E}(D \setminus \{d\})$, remove d from D

Check every $d \in D$

Difficulty?

m linear programs of size $n \times m$

Where used?

Standard in many redundancy removal packages such as CDDLIB and POLYHEDRA.JL [2]

References

- [1] Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. Basic properties of convex polytopes. In Handbook of discrete and computational geometry, pages 383-413. Chapman and Hall/CRC, 2017.
- [2] Benoît Legat. personal communication.
- [3] Nawapon Nakharutai, Matthias CM Troffaes, and Camila CS Caiado. Improved linear programming methods for checking avoiding sure loss. International Journal of Approximate Reasoning, 101:293–310, 2018.

1) Find a hyperplane that intersects $\mathscr{E}(D)$ linear feasibility problem:

find
$$v \in \mathbb{R}, v \ge 1$$

s.t. $\mathbf{D}^{\mathrm{T}} v \ge 1$

Hyperplane $H: g \in H \Leftrightarrow v \cdot g = 1$

② Scale all d_k and all \mathbb{I}_x onto H

$$d_k' = \frac{d_k}{\mathbf{v} \cdot d_k}; \mathbb{I}_x' = \frac{\mathbb{I}_x}{\mathbf{v} \cdot \mathbb{I}_x}$$

3 Remove last coordinate retrievable from $v \cdot g = 1$

$$d_k''; \mathbb{I}_x''$$

4 Find convex hull on H

n	Method
2	min & max
3,4	$O(m \log m)$ algorithm
5,,~8	QHull
higher	Naive Method

Difficulty?

One linear program of size $m \times n$

Difficulty of the convex hull \rightarrow exponential in n

1) Use expectations = hyperplanes For every linearly independent $\{g_1,...,g_{n-1}\}\subseteq D\cup\{\mathbb{I}_x\colon x\in\mathscr{X}\}$

$$\left\langle \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \end{array} \right\rangle = \left\langle \begin{array}{c} -1 \\ \cdot \\ \cdot \\ \end{array} \right\rangle$$

$$\mathbf{E} = \begin{pmatrix} \vdots \\ \mathbf{g}_{n-1}^{\mathsf{T}} \\ \mathbf{1}^{\mathsf{T}} \end{pmatrix}^{-1} \begin{pmatrix} \vdots \\ 0 \\ 1 \end{pmatrix}$$

2 Remove redundant E's linear feasibility problem:

find
$$\mu \in \mathbb{R}^{\ell-1}, \mu \geq 0, \sum \mu = 1$$

s.t. $\left(\cdots \mid \mathbf{E}_{k-1} \mid \mathbf{E}_{k+1} \mid \cdots \mid \mathbf{E}_{\ell} \right) \mu = \mathbf{E}_{k}$

If feasible \rightarrow remove E_k

(3) Inference using lower prevision $g \in \mathscr{E}(D) \Leftrightarrow g \neq 0 \land \min_{\mathbf{E}} \mathbf{E} \cdot \mathbf{g} \geq 0$

Difficulty?

After simplification,

tight upper bound on ℓ [1, p. 394-395]

 \rightarrow exponential in n and often achieved in random experiments ⇒ exponential memory required ⇒ calculate exponential # inner products