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Desirability: the basics

Options and preferences
The option space % is a real linear space, consisting of options u.



Desirability: the basics

— gambles f: Z — R on some
set &

— indifference classes of
gambles on some set 2~

— Hermitian operators on a
Hilbert space

Options and preferences

The option space % is a real linear space, consisting of options u.

A preference order > represents
u > v means that You

preferences between options:
option u over option v.



Desirability: the basics

Options and preferences
The option space % is a real linear space, consisting of options u.

A preference order > represents preferences between options:

u > v means that You option u over option v.

Rationality criteria for preference

PR,.
PR,.
PR;.
PR,.

the relation t> is a strict partial preorder: irreflexive and transitive
u>v=ut+w>v+wforaluv.we¥
urv=Aur>Avforallu,ve Z and A >0

if u > vthenalsou > vforallu,v e %



Desirability: the basics

The background ordering > is com-

pletely determined by its Options and preferences
The 7 is areal linear space, consisting of u.
Uy ={u€U:u=0}. A > represents preferences between options:
u > v means that You option u over option v.

Rationality criteria for preference

PR,.
PR,.
PR;.
PR,.

the relation t> is a strict partial preorder: irreflexive and transitive
u>v=ut+w>v+wforaluv.we¥

ur>v=Aur Avforallu,yv €% and A >0

if u > vthenalsou > vforallu,v e %

Here, >~ is some preference order, reflecting those minimal
preferences You must always have.

The preference order is typically , requirement.



Desirability: the basics

The background ordering - is com-  The preference order 1> is completely determined by the
pletely determined by its cone of
positive options

D={uec?:ur 0},
U ={uc:u>0}. as

ubveu—v>0su—veD.



Desirability: the basics

The background ordering > is com-
pletely determined by its cone of
positive options

U ={uc:u>0}.

The preference order 1> is completely determined by the

D={uec?:ur 0},

as
ubveu—v>0su—veD.

Desirable options
A desirable option u is one You (strictly) prefer over the zero option.

We call D Your set of desirable options.



Desirability: the basics

The background ordering > is com-
pletely determined by its cone of

Coherence criteria for desirability
positive options

Di. 0¢D

Dy. uyveD=u+veDforalluyve¥
Ds. ue D=AuecDforallue Z and A >0

U ={uc:u>0}.

Dy. ifu = 0Othenalsou € D forallu € %



Desirability: the basics

The background ordering > is com-
pletely determined by its cone of
positive options

U ={uc:u>0}.

Coherence criteria for desirability

D;.
D>.
D;.
D..

0¢D
u,veD=u+veDforalluyve
ueD=AuecDforalluc % and A >0
ifu - Othenalsou € D forallu ¢

A coherent set of desirable options D is a
positive cone 7/ and doesn’t contain 0.

that includes the



Desirability: the basics

2 ={a,b} Coherence criteria for desirability

D,. 0¢D

Dy. uyveED=u+veDforalluyye¥

D;. ueD=AuecDforalluc % and A >0
Dy. ifu = 0Othenalsou D forallu € %

A coherent set of desirable options D is a that includes the
positive cone 7/ and doesn’t contain 0.




Desirability: the basics

X' ={a,b}

Coherence criteria for desirability

Di. 0¢D

Dy. uyveED=u+veDforalluyye¥

D;. ueD=AuecDforalluc % and A >0
Dy. ifu = 0Othenalsou € D forallu € %

A coherent set of desirable options D is a
positive cone 7/ and doesn’t contain 0.

that includes the



Desirability: the basics

#'={a,b} Coherence criteria for desirability

D;. 0¢D

Dy. uyveD=u+veDforallu,yvew
D;s. ueD=AucDforalluc 7 and A >0
Dy. ifu = Othenalsou € D forallu € %

A coherent set of desirable options D is a convex cone that includes the
positive cone 7. ( and doesn’t contain 0.




Desirability: the basics

2= {a,b} Coherence criteria for desirability
Di. 0¢D
\b Dy. uyveD=u+veDforallu,yve¥
\\‘ Ds. ueD=AucDforalluec 7 and A >0
| D4.

ifu = OthenalsoucDforaluc

A coherent set of desirable options D is a convex cone that includes the
positive cone 7. ( and doesn’t contain 0.
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choice models, called sets of desirable option sets. In order to be able to bring an important
diversity of contexts into the fold, amongst which choice between horse lottery options, |
pay special attention to the case where these linear spaces don't include all ‘constant’

Keywords: options. I consider the frameworks of conservative inference associated with Archimedean
Choice function (and coherent) choice models, and also pay quite a lot of attention to representation of
Set of desirable option sets general (non-binary) choice models in terms of the simpler, binary ones. The representation
Coherence theorems proved here provide an axiomatic characterisation for, amongst many other
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Archimedean models: the basics

Structural assumptions
The option space %, provided with a norm ||«

PCE:

The norm |||, induces a on 7/, with interior
operator Int and closure operator CI.

A real functional I': % — R is bounded if its operator norm ||T||,,. is:

T (u)|
[Tl = sup
wez\{o} |1u

< oo




Archimedean models: the basics
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Structural assumptions
The option space %, provided with a norm ||«

PCE:

The norm |||, induces a on 7/, with interior
operator Int and closure operator CI.

A real functional I": % — R is bounded if its operator norm ||T"

T (u)|
[Cllzo == sup
wez\{o} |1u

o st

< oo

Take as unit element 15, any (normed) element in the interior of 7/ :

17, € Int(%:. ) and optionally |1 ||, = 1.




Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

Ap(u) =sup{a € R: u—aly €D} forallu € %
Selling price functional:
Ap(u) =inf{B € R: fly —u €D} forallu € %

Conjugacy:

Ap(u)=—Ap(—u)forallu € %



Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

Ap(u) =sup{laeR: u—aly eD}forallu e %
Selling price functional:

Ap(u) =inf{B €eR: flyy —uecD}foralluc ¥

Relation to Your preference model D

uelnt(D) < Ap(u)>0andu € CI(D) < Ap(u) >0

The real functional A, characierises D up o its topological boundary.



Archimedean models: coherent (lower and upper) previsions

Coherent lower prevision

A real functional P: % — R is a coherent lower prevision if and only if
there is some D suchthat P = Ap.

Coherent upper prevision
A real functional P: % — R is a coherent lower prevision if and only if
there is some D such that P = Ap.

Coherent prevision

A real functional P: % — R is a coherent prevision if and only if there
is some D suchthat P = A, = Ap.



Archimedean models: coherent (lower and upper) previsions

Characterisation
A real functional P: % — R is a coherent lower prevision if and only if

LPy. P(u+v)>P(u)+P(v)forallu,v e %
LP,. P(Au) = AP(u)forallu € 7/ and allreal 1 >0

LP3. ||P||,e < +oo
LPy. P(u+aly)=P(u)+oaforallu €7 and all real @

LPs. ifu = vthen P(u) > P(v) forallu,v € %

A real functional P: % — R is a coherent prevision if and only if
Pi. P(Au+pv) =AP(u)+ uP(v)forallu,v € % andallreal 1,

P3. P(14©) =1
Py. ifu = Othen P(u) > Oforallu € %
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based on statements of acceptability, desirability, or favourability and clarifies their relative
position. Next to the statement-based formulation, we also provide a translation in
terms of preference relations, discuss—as a bridge to existing frameworks—a number of

Keywords: simplified variants, and show the relationship with prevision-based uncertainty models.
Acceptability We furthermore provide an application to modelling symmetry judgements.
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Prevision




Indifference: the basics
u=v expresses that You are indifferent between options « and v.

Rationality criteria for the indifference relation =
I1. the relation = is an equivalence relation: reflexive, symmetric
and transitive;
L. u=v=ut+w=v+wforallu,v,w € %;
3. u=v=Au=Avforallu,y € Z and 1 € R.



Indifference: the basics

u=v expresses that You are indifferent between options « and v.

Rationality criteria for the indifference relation =

I1. the relation = is an equivalence relation: reflexive, symmetric
and transitive;

L. u=v=ut+w=v+wforallu,v,w € %;
3. u=v=Au=Avforallu,y € Z and 1 € R.

The indifference relation = is completely determined by the

7 I ={ueU:u=0},

as
u=v&eu—v=0&u—ve s



Indifference: the basics

u=v expresses that You are indifferent between options « and v.

Rationality criteria for the indifference relation =

I1. the relation = is an equivalence relation: reflexive, symmetric
and transitive;

L. u=v=ut+w=v+wforallu,v,w € %;
3. u=v=Au=Avforallu,y € Z and 1 € R.

An indifferent option u is one You deem

We call .7 Your set of indifferent options.



Indifference: the basics

Desirability expresses a to the zero option.

Indifference expresses to the zero option.

Desirability and indifference together
We call a set of desirable options D .7-compatible if

D+ .7 C D, or equivalently, D+ . = D.



Indifference: the basics

Desirability expresses a to the zero option.

Indifference expresses to the zero option.

Desirability and indifference together
We call a set of desirable options D .7-compatible if

D+ .7 C D, or equivalently, D+ . = D.

Compatibility condition
There are such .7-compatible and coherent sets of desirable options if
and only if

INU_y=0, or equivalently, FN%-o9 = 0.



Indifference: quotient spaces

Equivalence classes under indifference

Partition the option space % into a collection of affine subspaces
parallel to .7:
uy=ut+rI={ec%: v=u}

is the set of u.

I u+9



Indifference: quotient spaces

w+ .7

Equivalence classes under indifference

Partition the option space 7% into a collection of affine subspaces
parallel to .7:
Uyg=u+I={vew: v=u}

is the set of all options that are indifferent to the option u.
Crucial, if simple, observation
If D+ .7 C D then

ueD < ulyCDforallue%.

Under indifference, desirability is a class property!



Indifference: the essence of representation

w+ .7




Indifference: the essence of representation

representation operator rep

representation space



Indifference: the essence of representation

representation operator rep

l 0=rep,(0)
4; rep ()

representation space




Indifference: representation

Representation

A representation for .7 consists of a representation space % and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ») = 4.



Indifference: representation

Representation
A representation for .7 consists of a representation space % and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ») = 4.

The indifference classes on the original space % are then given by:

ly=u+7= rep;,1 ({rep](u)}) = {v EU: rep,(v) = repj(u)}.



Indifference: representation

Representation
A representation for .7 consists of a representation space % and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ») = 4.

The indifference classes on the original space % are then given by:

ly=u+7= rep;,1 ({rep](u)}) = {v EU: rep,(v) = repj(u)}.



Indifference: representation

Representation

A representation for .7 consists of a representation space % and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ») = 4.

Inherited background ordering on %

w=*0& (Jue %) (w=rep,(u) and u > 0).



Indifference: representation

Representation

A representation for .# consists of a representation space # and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ) = £

Representation theorem

A set D of desirable options in % is .- if and
only if there’s some coherent set D* of desirable options in /" such
that D = rep}/1 (D*) ={u: rep 4(u) € D*}, and this representation D*
is then uniquely given by D* =rep (D) = {rep ,(u): u € D}.



Indifference: representation

Representation

A representation for .7 consists of a representation space # and a
representation operator rep ,: % — # such that

— W is areal linear space and rep , is a linear map;
— rep , is onto: rg(rep ) = #/;
— ker(rep ) = £

Representation theorem
I on the original space are taken care
of by on the (simpler) representation space.



WHY BOTHER?
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Symmetry

Consider working with gambles f on an uncertain variable X in .2, so
feqg(2).

There is a behind X, modelled by a 7 of transform-
abstract | gambles ations T: 2 — &
v | 92) —TyoT,ec Tforall T\, T, € .7,
u | f —1y0T=Toly=Tforall T € 7.
> | weak ordering



Symmetry

Consider working with gambles f on an uncertain variable X in .2, so

feg(x).
Thereis a behind X, modelled by a monoid .7 of transform-
abstract | gambles ations 7': 2" — 2
v | 92) —TioT,e T forall Ty, T, € 7;
u | f —170T=Tolgy=Tforal T e 7.
> | weak ordering
=\ =7 The effect of the symmetry assessment is
I\ I

f
If =foT sof=71Tf

This leads to a linear space of indifferent gambles

Sy = span({f—Tf:fe%(%') and T € 7})



Symmetry

abstract | gambles
U | G(L)

f

weak ordering

=7

J7

Ky =

Consistency condition
There are coherent sets of desirable gambles on 2" that are
.7 7-compatible if and only if

f7 ﬂ%(%’)w) =0.



Symmetry

abstract | gambles
U | G(L)
u | f
> | weak ordering
= =7
I | Iy

Consistency condition
There are coherent sets of desirable gambles on 2" that are
.7 7-compatible if and only if

L ﬂ%((%)>() = 0.

supg > Oforallg € 7.



Symmetry

Consistency condition

There are coherent sets of desirable gambles on 2" that are
.7 7-compatible if and only if

abstract | gambles I7NG (X )0 =0.
U | G(L)
u | f s
> | weak ordering
=|=g supg > Oforall g € I7.
TN I7

Necessary and sufficient condition for the existence of
Pon¥(2):

P(f) = P(Tf) for allgambles f €« ¥(Z ) and all T € 7.

A 7 is the set of all such invariant coherent previsions.



Symmetry

abstract | gambles
U | G(L)
u | f
> | weak ordering
= =7
I I

Evaluation gambles
G (A7) is the of all evaluation gambles

M7 =R P f7(P):=P(f), for all gambles 1.



Symmetry

Evaluation gambles
G* (M 7) is the of all evaluation gambles

M7 =R P f*(P):=P(f), for all gambles 1.

abstract | gambles
v | 92) ,
| f Representation
o | weak ordering Take as representation space ¥*(.# ) and as representation
=| =5 operator the onto map
I I7 .
W G (M) Py, - G(X) =G (M7): [ ep s, f) =1,
ePs | TP.s7 then, under some conditions,
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Conditioning in probability theory

Consider working with gambles f on an uncertain variable X in 2.

abstract | gambles You start out with a coherent set of desirable gambles D, and then get
w | 9Y(Z) the new information that the ACE
u | f

> | weak ordering



Conditioning in probability theory

abstract

QY s N

gambles
G(X)

f

weak ordering

=A
BN

Consider working with gambles f on an uncertain variable X in 2.

You start out with a coherent set of desirable gambles D, and then get
the new information that the AC X

Two gambles f and g that have the A are now
to You:

f=agelyf=hgand Iy ={hec b (Z): 1ah=0}.



Conditioning in probability theory

abstract

QY = N

rep s

Nw

gambles
G(X)

f

weak ordering
=A

B

rep gz,

G (A)

Consider working with gambles f on an uncertain variable X in 2.

You start out with a coherent set of desirable gambles D, and then get
the new information that the AC X

Two gambles f and g that have the A are now indif-
ferent to You:

f=agelyf=hgand Iy ={he9(2): Iah=0}.

The rep - is in this case
rep s, G(2) > 9G(A): f = fla.

The is now ¥ (A).



Conditioning in probability theory

abstract
/4

QY =

But there is a problem!

gambles

9L IaNG (X )0 #0.
f

weak orderin

_ 9 N

=A

BN

N



Conditioning in probability theory

abstract
/4

QY =

But there is a problem!

gambles
G IANG (2 )0 # 0.
f
k orderi
v_vea ordering 7
=A
B

f

0 \—=

N



Conditioning in probability theory

Interpretation to the rescue!

abstract | gambles On the A:
U | 9L
f

weak ordering

DIA={gc9(A): gla€D}is

=A
BN

QY =




Conditioning in probability theory

Interpretation to the rescue!

abstract | gambles On the A:
v |92 .
s DIA={gc9(A): gla€D}is
i v_veak ordering On the P
= | =a
S| Ia D|A={fe¥%(Z): fly €D}
= rep;,,i (D]A) is F4- but not coherent



Conditioning in probability theory

abstract
/4

QY =

gambles
G(L)

f

weak ordering

=A
BN

Interpretation to the rescue!
On the A:

DIA={gc9(A): gla€D}is
On the 2
D|A={fe¥(Z): flaeD}
= rep;,,i (D]A) is F4- but not coherent
DI|A = rep}/‘\ (DJAYUY (2 )0
={fe9(Z):fIaeDorf0}.

D|A is as close as we can get to .74- while
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