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Desirability: the basics

Options and preferences
The option space U is a real linear space, consisting of options u.

A preference order ▷ represents Your preferences between options:
u ▷ v means that You strictly prefer option u over option v.

Rationality criteria for preference

PR1. the relation ▷ is a strict partial preorder: irreflexive and transitive

PR2. u ▷ v ⇒ u +w ▷ v +w for all u,v,w ∈ U

PR3. u ▷ v ⇒ λu ▷ λv for all u,v ∈ U and λ > 0
PR4. if u � v then also u ▷ v for all u,v ∈ U

Here, � is some background preference order, reflecting those minimal
preferences You must always have.

The preference order is typically partial, no totality requirement.
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EXAMPLES

– gambles f : X → R on some
set X

– indifference classes of
gambles on some set X

– Hermitian operators on a
Hilbert space
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The background ordering � is com-
pletely determined by its cone of
positive options

U�0 := {u ∈ U : u � 0}.
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Desirability: the basics

The background ordering � is com-
pletely determined by its cone of
positive options

U�0 := {u ∈ U : u � 0}.

The preference order ▷ is completely determined by the convex cone

D := {u ∈ U : u ▷ 0},

as
u ▷ v ⇔ u − v ▷ 0 ⇔ u − v ∈ D.

Desirable options
A desirable option u is one You (strictly) prefer over the zero option.

We call D Your set of desirable options.
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Desirability: the basics

The background ordering � is com-
pletely determined by its cone of
positive options

U�0 := {u ∈ U : u � 0}.

Coherence criteria for desirability
D1. 0 /∈ D

D2. u,v ∈ D ⇒ u + v ∈ D for all u,v ∈ U

D3. u ∈ D ⇒ λu ∈ D for all u ∈ U and λ > 0
D4. if u � 0 then also u ∈ D for all u ∈ U

A coherent set of desirable options D is a convex cone that includes the
positive cone U�0 and doesn’t contain 0.
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Archimedean models: the basics

U�0

‖•‖U = 1
0

1U

Structural assumptions
The option space U , provided with a norm ‖•‖U , is a Banach space.

The norm ‖•‖U induces a metric topology on U , with interior
operator Int and closure operator Cl.

A real functional Γ : U → R is bounded if its operator norm ‖Γ‖U ◦ is:

‖Γ‖U ◦ := sup
u∈U \{0}

|Γ(u)|
‖u‖U

<+∞.

Take as unit element 1U any (normed) element in the interior of U�0:

1U ∈ Int(U�0) and optionally ‖1U ‖U = 1.
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Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

ΛD(u) := sup{α ∈ R : u −α1U ∈ D} for all u ∈ U

Selling price functional:

ΛD(u) := inf{β ∈ R : β1U −u ∈ D} for all u ∈ U

Conjugacy:
ΛD(u) =−ΛD(−u) for all u ∈ U



Archimedean models: buying and selling price functionals
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Other ways to characterise Your preferences?
Buying price functional:

ΛD(u) := sup{α ∈ R : u −α1U ∈ D} for all u ∈ U

Selling price functional:

ΛD(u) := inf{β ∈ R : β1U −u ∈ D} for all u ∈ U

Relation to Your preference model D

u ∈ Int(D)⇔ ΛD(u)> 0 and u ∈ Cl(D)⇔ ΛD(u)≥ 0

The real functional ΛD characterises D up to its topological boundary.



Archimedean models: coherent (lower and upper) previsions

Coherent lower prevision
A real functional P : U → R is a coherent lower prevision if and only if
there is some coherent set of desirable options D such that P = ΛD .

Coherent upper prevision
A real functional P : U → R is a coherent lower prevision if and only if
there is some coherent set of desirable options D such that P = ΛD .

Coherent prevision
A real functional P : U → R is a coherent prevision if and only if there
is some coherent set of desirable options D such that P = ΛD = ΛD .



Archimedean models: coherent (lower and upper) previsions

Characterisation
A real functional P : U → R is a coherent lower prevision if and only if

LP1. P(u + v)≥ P(u)+P(v) for all u,v ∈ U

LP2. P(λu) = λP(u) for all u ∈ U and all real λ > 0
LP3. ‖P‖U ◦ <+∞
LP4. P(u +α1U ) = P(u)+α for all u ∈ U and all real α
LP5. if u � v then P(u)≥ P(v) for all u,v ∈ U

A real functional P : U → R is a coherent prevision if and only if

P1. P(λu +µv) = λP(u)+µP(v) for all u,v ∈ U and all real λ ,µ
P2. ‖P‖U ◦ <+∞
P3. P(1U ) = 1
P4. if u � 0 then P(u)≥ 0 for all u ∈ U



INDIFFERENCE





Indifference: the basics

I

0

u≡ v expresses that You are indifferent between options u and v.

Rationality criteria for the indifference relation ≡
I1. the relation ≡ is an equivalence relation: reflexive, symmetric

and transitive;

I2. u≡ v ⇒ u +w≡ v +w for all u,v,w ∈ U ;

I3. u≡ v ⇒ λu≡λv for all u,v ∈ U and λ ∈ R.
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I3. u≡ v ⇒ λu≡λv for all u,v ∈ U and λ ∈ R.

The indifference relation ≡ is completely determined by the linear
(sub)space

I := {u ∈ U : u≡ 0},

as
u≡ v ⇔ u − v≡ 0 ⇔ u − v ∈ I.
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An indifferent option u is one You deem equivalent to the zero option.

We call I Your set of indifferent options.



Indifference: the basics

I

0

Desirability expresses a strict preference to the zero option.

Indifference expresses equivalence to the zero option.

Desirability and indifference together
We call a set of desirable options D I-compatible if

D +I ⊆ D, or equivalently, D +I = D.

Adding an indifferent option to any option doesn’t alter the latter’s
desirability.

Compatibility condition
There are such I-compatible and coherent sets of desirable options if
and only if

I∩U�0 = /0, or equivalently, I∩U≺0 = /0.



Indifference: the basics

I

0

Desirability expresses a strict preference to the zero option.

Indifference expresses equivalence to the zero option.

Desirability and indifference together
We call a set of desirable options D I-compatible if

D +I ⊆ D, or equivalently, D +I = D.

Adding an indifferent option to any option doesn’t alter the latter’s
desirability.

Compatibility condition
There are such I-compatible and coherent sets of desirable options if
and only if

I∩U�0 = /0, or equivalently, I∩U≺0 = /0.



Indifference: quotient spaces

I u +I

u

0

Equivalence classes under indifference
Partition the option space U into a collection of affine subspaces
parallel to I:

[u]I := u +I = {v ∈ U : v≡ u}

is the set of all options that are indifferent to the option u.

Crucial, if simple, observation
If D +I ⊆ D then

u ∈ D ⇔ [u]I ⊆ D for all u ∈ U .

Under indifference, desirability is a class property!
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Indifference: the essence of representation
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Indifference: representation

Representation
A representation for I consists of a representation space W and a
representation operator repI : U → W such that

– W is a real linear space and repI is a linear map;

– repI is onto: rng(repI) = W ;

– ker(repI) = I.

Do representations always exist?
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representation operator repI : U → W such that

– W is a real linear space and repI is a linear map;

– repI is onto: rng(repI) = W ;

– ker(repI) = I.

The indifference classes on the original space U are then given by:

[u]I = u +I = rep−1
I

(
{repI(u)}

)
=
{

v ∈ U : repI(v) = repI(u)
}
.

Do representations always exist?
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Representation
A representation for I consists of a representation space W and a
representation operator repI : U → W such that

– W is a real linear space and repI is a linear map;

– repI is onto: rng(repI) = W ;

– ker(repI) = I.

Do representations always exist?

Inherited background ordering on W

w �⋆ 0 ⇔ (∃u ∈ U )
(
w = repI(u) and u � 0

)
.



Indifference: representation

Representation
A representation for I consists of a representation space W and a
representation operator repI : U → W such that

– W is a real linear space and repI is a linear map;

– repI is onto: rng(repI) = W ;

– ker(repI) = I.

Do representations always exist?

Representation theorem
A coherent set D of desirable options in U is I-compatible if and
only if there’s some coherent set D⋆ of desirable options in W such
that D = rep−1

I (D⋆) = {u : repI(u) ∈ D⋆}, and this representation D⋆

is then uniquely given by D⋆ = repI(D) = {repI(u) : u ∈ D}.



Indifference: representation

Representation
A representation for I consists of a representation space W and a
representation operator repI : U → W such that

– W is a real linear space and repI is a linear map;

– repI is onto: rng(repI) = W ;

– ker(repI) = I.

Do representations always exist?

Representation theorem
Coherence and I-compatibility on the original space are taken care
of by mere coherence on the (simpler) representation space.



WHY BOTHER?



SYMMETRY



Symmetry

abstract gambles

U G (X )

u f
� weak ordering

≡ ≡T

I IT

W G ∗(MT )

repI repIT

Consider working with gambles f on an uncertain variable X in X , so
f ∈ G (X ).

There is a symmetry behind X, modelled by a monoid T of transform-
ations T : X → X :

– T1 ◦T2 ∈ T for all T1,T2 ∈ T ;

– 1T ◦T = T ◦1T = T for all T ∈ T .

The effect of the symmetry assessment is indifference:

You are indifferent between any gamble f and any of its
transforms Tf := f ◦T , so f ≡T Tf .

This leads to a linear space of indifferent gambles

IT := span
(
{f −Tf : f ∈ G (X ) and T ∈ T }

)
.
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Symmetry

abstract gambles

U G (X )

u f
� weak ordering
≡ ≡T

I IT

W G ∗(MT )

repI repIT

Consistency condition
There are coherent sets of desirable gambles on X that are
IT -compatible if and only if

IT ∩G (X )�0 = /0.

Consequence:

T is amenable!

supg ≥ 0 for all g ∈ IT .

Necessary and sufficient condition for the existence of invariant coher-
ent previsions P on G (X ):

P(f ) = P(Tf ) for all gambles f ∈ G (X ) and all T ∈ T .

MT is the set of all such invariant coherent previsions.
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abstract gambles

U G (X )

u f
� weak ordering
≡ ≡T

I IT

W G ∗(MT )

repI repIT

Evaluation gambles
G ∗(MT ) is the linear space of all evaluation gambles

f ∗ : MT → R : P 7→ f ∗(P) := P(f ), for all gambles f .

Representation
Take as representation space G ∗(MT ) and as representation
operator the onto map

repIT
: G (X )→ G ∗(MT ) : f 7→ repIT

(f ) := f ∗,

then, under some conditions,

ker(repIT
) = IT !
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Conditioning in probability theory

abstract gambles

U G (X )

u f
� weak ordering

≡ ≡A
I IA

repI repIA

W G (A)

0
X

A

f

Consider working with gambles f on an uncertain variable X in X .

You start out with a coherent set of desirable gambles D, and then get
the new information that the event A ⊂ X has occurred.

Two gambles f and g that have the same behaviour on A are now indif-
ferent to You:

f ≡A g ⇔ IAf = IAg and IA = {h ∈ G (X ) : IAh = 0}.

The representation operator repIA
is in this case

repIA
: G (X )→ G (A) : f 7→ f |A.

The representation space is now G (A).
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But there is a problem!

IA ∩G (X )�0 6= /0.

THERE ARE NO COHERENT AND IA-COMPATIBLE MODELS.

0
X

A

f

REPRESENTATION CAN NEVER WORK!
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Conditioning in probability theory

abstract gambles

U G (X )

u f
� weak ordering
≡ ≡A
I IA

repI repIA
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0
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Interpretation to the rescue!
On the representing space A:

DcA := {g ∈ G (A) : gIA ∈ D} is coherent.

On the original space X :

D‖A := {f ∈ G (X ) : f IA ∈ D}
= rep−1

IA
(DcA) is IA-compatible but not coherent
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