Indifference, symmetry and conditioning

Gert de Cooman

Foundations Lab (FLip)
Ghent University

ISIPTA 2023, Oviedo, 13 July 2023

DESIRABILITY

Desirability: pioneers

PETER WILLIAMS

PETER WALLEY

TEDDY SEIDENFELD

Desirability: the basics

Options and preferences
The option space \mathscr{U} is a real linear space, consisting of options u.

Desirability: the basics

EXAMPLES

- gambles $f: \mathscr{X} \rightarrow \mathbb{R}$ on some set \mathscr{X}
- indifference classes of gambles on some set \mathscr{X}
- Hermitian operators on a Hilbert space

Options and preferences

The option space \mathscr{U} is a real linear space, consisting of options u.
A preference order \triangleright represents Your preferences between options: $u \triangleright v$ means that You strictly prefer option u over option v.

Desirability: the basics

Options and preferences

The option space \mathscr{U} is a real linear space, consisting of options u.
A preference order \triangleright represents Your preferences between options:
$u \triangleright v$ means that You strictly prefer option u over option v.

Rationality criteria for preference

PR_{1}. the relation \triangleright is a strict partial preorder: irreflexive and transitive
$\mathrm{PR}_{2} . u \triangleright v \Rightarrow u+w \triangleright v+w$ for all $u, v, w \in \mathscr{U}$
$\mathrm{PR}_{3} . u \triangleright v \Rightarrow \lambda u \triangleright \lambda v$ for all $u, v \in \mathscr{U}$ and $\lambda>0$
PR_{4}. if $u \succ v$ then also $u \triangleright v$ for all $u, v \in \mathscr{U}$

Desirability: the basics

The background ordering \succ is completely determined by its cone of positive options

$$
\mathscr{U}_{\succ 0}:=\{u \in \mathscr{U}: u \succ 0\} .
$$

Options and preferences

The option space \mathscr{U} is a real linear space, consisting of options u.
A preference order \triangleright represents Your preferences between options:
$u \triangleright v$ means that You strictly prefer option u over option v.

Rationality criteria for preference

PR_{1}. the relation \triangleright is a strict partial preorder: irreflexive and transitive
$\mathrm{PR}_{2} . u \triangleright v \Rightarrow u+w \triangleright v+w$ for all $u, v, w \in \mathscr{U}$
$\mathrm{PR}_{3} . u \triangleright v \Rightarrow \lambda u \triangleright \lambda v$ for all $u, v \in \mathscr{U}$ and $\lambda>0$
PR_{4}. if $u \succ v$ then also $u \triangleright v$ for all $u, v \in \mathscr{U}$
Here, \succ is some background preference order, reflecting those minimal preferences You must always have.

The preference order is typically partial, no totality requirement.

Desirability: the basics

The background ordering \succ is completely determined by its cone of positive options

$$
\mathscr{U}_{\succ 0}:=\{u \in \mathscr{U}: u \succ 0\} .
$$

The preference order \triangleright is completely determined by the convex cone

$$
D:=\{u \in \mathscr{U}: u \triangleright 0\},
$$

as

$$
u \triangleright v \Leftrightarrow u-v \triangleright 0 \Leftrightarrow u-v \in D .
$$

Desirability: the basics

The background ordering \succ is completely determined by its cone of positive options

$$
\mathscr{U}_{\succ 0}:=\{u \in \mathscr{U}: u \succ 0\} .
$$

The preference order \triangleright is completely determined by the convex cone

$$
D:=\{u \in \mathscr{U}: u \triangleright 0\},
$$

as

$$
u \triangleright v \Leftrightarrow u-v \triangleright 0 \Leftrightarrow u-v \in D .
$$

Desirable options

A desirable option u is one You (strictly) prefer over the zero option.
We call D Your set of desirable options.

Desirability: the basics

The background ordering \succ is completely determined by its cone of positive options

$$
\mathscr{U}_{\succ 0}:=\{u \in \mathscr{U}: u \succ 0\} .
$$

Coherence criteria for desirability
$\mathrm{D}_{1} .0 \notin D$
D. $u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

Desirability: the basics

The background ordering \succ is completely determined by its cone of positive options

$$
\mathscr{U}_{\succ 0}:=\{u \in \mathscr{U}: u \succ 0\} .
$$

Coherence criteria for desirability
$\mathrm{D}_{1} .0 \notin D$
D. $u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

A coherent set of desirable options D is a convex cone that includes the positive cone $\mathscr{U}_{\succ 0}$ and doesn't contain 0 .

Desirability: the basics

$\mathscr{X}=\{a, b\}$

Coherence criteria for desirability
$\mathrm{D}_{1} .0 \notin D$
$\mathrm{D}_{2} . u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

A coherent set of desirable options D is a convex cone that includes the positive cone $\mathscr{U}_{\succ 0}$ and doesn't contain 0 .

Desirability: the basics

$\mathscr{X}=\{a, b\}$

Coherence criteria for desirability
$\mathrm{D}_{1} .0 \notin D$
$\mathrm{D}_{2} . u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

A coherent set of desirable options D is a convex cone that includes the positive cone $\mathscr{U}_{\succ 0}$ and doesn't contain 0 .

Desirability: the basics

$\mathscr{X}=\{a, b\}$

Coherence criteria for desirability
$\mathrm{D}_{1} .0 \notin D$
D. $u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

A coherent set of desirable options D is a convex cone that includes the positive cone $\mathscr{U}_{\succ 0}$ and doesn't contain 0 .

Desirability: the basics

$$
\mathscr{X}=\{a, b\}
$$

Coherence criteria for desirability
D. $0 \notin D$
D. $u, v \in D \Rightarrow u+v \in D$ for all $u, v \in \mathscr{U}$
$\mathrm{D}_{3} . u \in D \Rightarrow \lambda u \in D$ for all $u \in \mathscr{U}$ and $\lambda>0$
D_{4}. if $u \succ 0$ then also $u \in D$ for all $u \in \mathscr{U}$

A coherent set of desirable options D is a convex cone that includes the positive cone $\mathscr{U}_{\succ 0}$ and doesn't contain 0 .

DERIVED ARCHIMEDEAN MODELS

Archimedean models: pioneers

BRUNO DE FINETTI

PETER WILLIAMS

PETER WALLEY

International Journal of Approximate Reasoning

ELSEVIER

www.elsevier.com/locate/ijar

Coherent and Archimedean choice in general Banach spaces

Gert de Cooman

Ghent University, Foundations Lab for Imprecise Probabilities, Technologiepark-Zwijnaarde 125, 9052 Zwijnaarde, Belgium

ARTICLE INFO

Article history:

Received 13 April 2021
Received in revised form 9 July 2021
Accepted 13 September 2021
Available online 19 October 2021

Keywords:

Choice function
Set of desirable option sets
Coherence
Archimedeanity
Representation

ABSTRACT

I introduce and study a new notion of Archimedeanity for binary and non-binary choice between options that live in an abstract Banach space, through a very general class of choice models, called sets of desirable option sets. In order to be able to bring an important diversity of contexts into the fold, amongst which choice between horse lottery options, I pay special attention to the case where these linear spaces don't include all 'constant' options. I consider the frameworks of conservative inference associated with Archimedean (and coherent) choice models, and also pay quite a lot of attention to representation of general (non-binary) choice models in terms of the simpler, binary ones. The representation theorems proved here provide an axiomatic characterisation for, amongst many other choice methods, Levi's E-admissibility and Walley-Sen maximality.
© 2021 Published by Elsevier Inc.

Archimedean models: the basics

Structural assumptions

The option space \mathscr{U}, provided with a norm $\|\bullet\|_{\mathscr{U}}$, is a Banach space.
The norm $\|\cdot\|_{\mathscr{U}}$ induces a metric topology on \mathscr{U}, with interior operator Int and closure operator Cl .

A real functional $\Gamma: \mathscr{U} \rightarrow \mathbb{R}$ is bounded if its operator norm $\|\Gamma\|_{\mathscr{U}}$ is:

$$
\|\Gamma\|_{\mathscr{U}^{\circ}}:=\sup _{u \in \mathscr{U} \backslash\{0\}} \frac{|\Gamma(u)|}{\|u\|_{\mathscr{U}}}<+\infty .
$$

Archimedean models: the basics

Structural assumptions

The option space \mathscr{U}, provided with a norm $\|\cdot\|_{\mathscr{U}}$, is a Banach space.
The norm $\|\cdot\|_{\mathscr{U}}$ induces a metric topology on \mathscr{U}, with interior operator Int and closure operator Cl .

A real functional $\Gamma: \mathscr{U} \rightarrow \mathbb{R}$ is bounded if its operator norm $\|\Gamma\|_{\mathscr{U}}$ is:

$$
\|\Gamma\|_{\mathscr{U}^{\circ}}:=\sup _{u \in \mathscr{U} \backslash\{0\}} \frac{|\Gamma(u)|}{\|u\|_{\mathscr{U}}}<+\infty .
$$

Take as unit element $\mathbb{1}_{\mathscr{U}}$ any (normed) element in the interior of $\mathscr{U}_{\succ 0}$:

$$
\mathbf{1}_{\mathscr{U}} \in \operatorname{Int}\left(\mathscr{U}_{\succ 0}\right) \text { and optionally }\left\|\mathbf{1}_{\mathscr{U}}\right\|_{\mathscr{U}}=1 .
$$

Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

$$
\underline{\Lambda}_{D}(u):=\sup \left\{\alpha \in \mathbb{R}: u-\alpha \mathbf{1}_{\mathscr{U}} \in D\right\} \text { for all } u \in \mathscr{U}
$$

Selling price functional:

$$
\bar{\Lambda}_{D}(u):=\inf \left\{\beta \in \mathbb{R}: \beta \mathbf{1}_{\mathscr{U}}-u \in D\right\} \text { for all } u \in \mathscr{U}
$$

Conjugacy:

$$
\bar{\Lambda}_{D}(u)=-\underline{\Lambda}_{D}(-u) \text { for all } u \in \mathscr{U}
$$

Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

$$
\underline{\Lambda}_{D}(u):=\sup \left\{\alpha \in \mathbb{R}: u-\alpha \mathbf{1}_{\mathscr{U}} \in D\right\} \text { for all } u \in \mathscr{U}
$$

Selling price functional:

$$
\bar{\Lambda}_{D}(u):=\inf \left\{\beta \in \mathbb{R}: \beta \mathbf{1}_{\mathscr{U}}-u \in D\right\} \text { for all } u \in \mathscr{U}
$$

Relation to Your preference model D

$$
u \in \operatorname{Int}(D) \Leftrightarrow \underline{\Lambda}_{D}(u)>0 \text { and } u \in \operatorname{Cl}(D) \Leftrightarrow \underline{\Lambda}_{D}(u) \geq 0
$$

The real functional $\underline{\Lambda}_{D}$ characterises D up to its topological boundary.

Archimedean models: coherent (lower and upper) previsions

Coherent lower prevision
A real functional $\underline{P}: \mathscr{U} \rightarrow \mathbb{R}$ is a coherent lower prevision if and only if there is some coherent set of desirable options D such that $\underline{P}=\underline{\Lambda}_{D}$.

Coherent upper prevision
A real functional $\bar{P}: \mathscr{U} \rightarrow \mathbb{R}$ is a coherent lower prevision if and only if there is some coherent set of desirable options D such that $\bar{P}=\bar{\Lambda}_{D}$.

Coherent prevision
A real functional $P: \mathscr{U} \rightarrow \mathbb{R}$ is a coherent prevision if and only if there is some coherent set of desirable options D such that $P=\underline{\Lambda}_{D}=\bar{\Lambda}_{D}$.

Archimedean models: coherent (lower and upper) previsions

Characterisation

A real functional $\underline{P}: \mathscr{U} \rightarrow \mathbb{R}$ is a coherent lower prevision if and only if
$\mathrm{LP}_{1} . \underline{P}(u+v) \geq \underline{P}(u)+\underline{P}(v)$ for all $u, v \in \mathscr{U}$
$\mathrm{LP}_{2} \cdot \underline{P}(\lambda u)=\lambda \underline{P}(u)$ for all $u \in \mathscr{U}$ and all real $\lambda>0$
$\mathrm{LP}_{3} .\|\underline{P}\|_{\mathscr{V}}<+\infty$
$\mathrm{LP}_{4} . \underline{P}\left(u+\alpha 1_{\mathscr{U}}\right)=\underline{P}(u)+\alpha$ for all $u \in \mathscr{U}$ and all real α
LP_{5}. if $u \succ v$ then $\underline{P}(u) \geq \underline{P}(v)$ for all $u, v \in \mathscr{U}$
A real functional $P: \mathscr{U} \rightarrow \mathbb{R}$ is a coherent prevision if and only if
$\mathrm{P}_{1} . P(\lambda u+\mu v)=\lambda P(u)+\mu P(v)$ for all $u, v \in \mathscr{U}$ and all real λ, μ
P. $\|P\|_{\mathscr{U}}{ }^{\circ}<+\infty$
$\mathrm{P}_{3} \cdot P\left(\mathbf{1}_{\mathscr{U}}\right)=1$
P_{4}. if $u \succ 0$ then $P(u) \geq 0$ for all $u \in \mathscr{U}$

INDIFFERENCE

Accept \& reject statement-based uncertainty models

Erik Quaeghebeur ${ }^{\text {a,b,*,1 }}$, Gert de Cooman ${ }^{\text {a }}$, Filip Hermans ${ }^{\text {a }}$
${ }^{\text {a }}$ SYSTeMS Research Group, Ghent University, Technologiepark 914, 9052 Zwijnaarde, Belgium
${ }^{\text {b }}$ Centrum Wiskunde \&' Informatica, Postbus 94079, 1090 GB Amsterdam, The Netherlands

ARTICLE INFO

Article history:
Received 11 July 2013
Received in revised form 5 December 2014
Accepted 16 December 2014
Available online 24 December 2014

Keywords:

Acceptability
Indifference
Desirability
Favourability
Preference
Prevision

ABSTRACT

We develop a framework for modelling and reasoning with uncertainty based on accept and reject statements about gambles. It generalises the frameworks found in the literature based on statements of acceptability, desirability, or favourability and clarifies their relative position. Next to the statement-based formulation, we also provide a translation in terms of preference relations, discuss-as a bridge to existing frameworks-a number of simplified variants, and show the relationship with prevision-based uncertainty models. We furthermore provide an application to modelling symmetry judgements.

$$
\text { © } 2015 \text { Elsevier Inc. All rights reserved. }
$$

Indifference: the basics

$u \equiv v$ expresses that You are indifferent between options u and v.
Rationality criteria for the indifference relation \equiv
I_{1}. the relation \equiv is an equivalence relation: reflexive, symmetric and transitive;

I $_{2} . u \equiv v \Rightarrow u+w \equiv v+w$ for all $u, v, w \in \mathscr{U}$;
$I_{3} . u \equiv v \Rightarrow \lambda u \equiv \lambda v$ for all $u, v \in \mathscr{U}$ and $\lambda \in \mathbb{R}$.

Indifference: the basics

$u \equiv v$ expresses that You are indifferent between options u and v.
Rationality criteria for the indifference relation \equiv
l_{1}. the relation \equiv is an equivalence relation: reflexive, symmetric and transitive;
$\mathrm{I}_{2} . u \equiv v \Rightarrow u+w \equiv v+w$ for all $u, v, w \in \mathscr{U}$;
$\mathrm{I}_{3} . u \equiv v \Rightarrow \lambda u \equiv \lambda v$ for all $u, v \in \mathscr{U}$ and $\lambda \in \mathbb{R}$.

The indifference relation \equiv is completely determined by the linear
(sub)space

$$
\mathscr{I}:=\{u \in \mathscr{U}: u \equiv 0\}
$$

as

$$
u \equiv v \Leftrightarrow u-v \equiv 0 \Leftrightarrow u-v \in \mathscr{I} .
$$

Indifference: the basics

$u \equiv v$ expresses that You are indifferent between options u and v.

Rationality criteria for the indifference relation \equiv
I_{1}. the relation \equiv is an equivalence relation: reflexive, symmetric and transitive;
I $_{2} . u \equiv v \Rightarrow u+w \equiv v+w$ for all $u, v, w \in \mathscr{U}$;
I $_{3} . u \equiv v \Rightarrow \lambda u \equiv \lambda v$ for all $u, v \in \mathscr{U}$ and $\lambda \in \mathbb{R}$.

An indifferent option u is one You deem equivalent to the zero option.
We call \mathscr{I} Your set of indifferent options.

Indifference: the basics

Desirability expresses a strict preference to the zero option.
Indifference expresses equivalence to the zero option.
Desirability and indifference together
We call a set of desirable options $D \mathscr{I}$-compatible if

$$
D+\mathscr{I} \subseteq D \text {, or equivalently, } D+\mathscr{I}=D \text {. }
$$

Adding an indifferent option to any option doesn't alter the latter's desirability.

Indifference: the basics

Desirability expresses a strict preference to the zero option.
Indifference expresses equivalence to the zero option.
Desirability and indifference together

We call a set of desirable options $D \mathscr{\mathscr { }}$-compatible if

$$
D+\mathscr{I} \subseteq D \text {, or equivalently, } D+\mathscr{I}=D \text {. }
$$

Adding an indifferent option to any option doesn't alter the latter's desirability.

Compatibility condition
There are such \mathscr{I}-compatible and coherent sets of desirable options if and only if

$$
\mathscr{I} \cap \mathscr{U}_{\succ 0}=\emptyset \text {, or equivalently, } \mathscr{I} \cap \mathscr{U}_{<0}=\emptyset .
$$

Indifference: quotient spaces

Equivalence classes under indifference
Partition the option space \mathscr{U} into a collection of affine subspaces parallel to \mathscr{I} :

$$
[u]_{\mathscr{I}}:=u+\mathscr{I}=\{v \in \mathscr{U}: v \equiv u\}
$$

is the set of all options that are indifferent to the option u.

Indifference: quotient spaces

Equivalence classes under indifference
Partition the option space \mathscr{U} into a collection of affine subspaces parallel to \mathscr{I} :

$$
[u]_{\mathscr{I}}:=u+\mathscr{I}=\{v \in \mathscr{U}: v \equiv u\}
$$

is the set of all options that are indifferent to the option u.

Crucial, if simple, observation If $D+\mathscr{I} \subseteq D$ then

$$
u \in D \Leftrightarrow[u]_{\mathscr{I}} \subseteq D \text { for all } u \in \mathscr{U} .
$$

Under indifference, desirability is a class property!

Indifference: the essence of representation

Indifference: the essence of representation

Indifference: the essence of representation

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{I}: \mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $\mathscr{\mathscr { I }}$ is a linear map;

$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{\mathscr { I }}$: $\mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $\mathscr{\mathscr { I }}$ is a linear map;
$-\operatorname{rep}_{\mathscr{I}}$ is onto: $\operatorname{rng}\left(\right.$ rep $\left._{\mathscr{I}}\right)=\mathscr{W}$;
$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

The indifference classes on the original space \mathscr{U} are then given by:

$$
[u]_{\mathscr{I}}=u+\mathscr{I}=\operatorname{rep}_{\mathscr{I}}^{-1}\left(\left\{\operatorname{rep}_{\mathscr{I}}(u)\right\}\right)=\left\{v \in \mathscr{U}: \operatorname{rep}_{\mathscr{I}}(v)=\operatorname{rep}_{\mathscr{I}}(u)\right\} .
$$

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{\mathscr { I }}$: $\mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $\mathscr{\mathscr { I }}$ is a linear map;
$-\operatorname{rep}_{\mathscr{I}}$ is onto: $\operatorname{rng}\left(\right.$ rep $\left._{\mathscr{I}}\right)=\mathscr{W}$;
$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

The indifference classes on the original space \mathscr{U} are then given by:

$$
[u]_{\mathscr{I}}=u+\mathscr{I}=\operatorname{rep}_{\mathscr{I}}^{-1}\left(\left\{\operatorname{rep}_{\mathscr{I}}(u)\right\}\right)=\left\{v \in \mathscr{U}: \operatorname{rep}_{\mathscr{I}}(v)=\operatorname{rep}_{\mathscr{I}}(u)\right\} .
$$

Do representations always exist?

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{\mathscr { I }}$: $\mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $\mathscr{\mathscr { I }}$ is a linear map;
$-\operatorname{rep}_{\mathscr{I}}$ is onto: $\operatorname{rng}\left(\right.$ rep $\left._{\mathscr{I}}\right)=\mathscr{W}$;
$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

Inherited background ordering on \mathscr{W}

$$
w \succ^{\star} 0 \Leftrightarrow(\exists u \in \mathscr{U})\left(w=\operatorname{rep}_{\mathscr{I}}(u) \text { and } u \succ 0\right)
$$

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{\mathscr { I }}$: $\mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $_{\mathscr{\mathscr { C }}}$ is a linear map;

$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

Representation theorem

A coherent set D of desirable options in \mathscr{U} is $\mathscr{\mathscr { S }}$-compatible if and only if there's some coherent set D^{\star} of desirable options in \mathscr{W} such that $D=\operatorname{rep}_{\mathscr{I}}^{-1}\left(D^{\star}\right)=\left\{u\right.$: rep $\left.\mathscr{\mathscr { N }}(u) \in D^{\star}\right\}$, and this representation D^{\star} is then uniquely given by $D^{\star}=\operatorname{rep}_{\mathscr{I}}(D)=\left\{\operatorname{rep}_{\mathscr{I}}(u): u \in D\right\}$.

Indifference: representation

Representation

A representation for \mathscr{I} consists of a representation space \mathscr{W} and a representation operator rep $\mathscr{I}: \mathscr{U} \rightarrow \mathscr{W}$ such that

- \mathscr{W} is a real linear space and rep $\mathscr{\mathscr { I }}$ is a linear map;

$-\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}}\right)=\mathscr{I}$.

Representation theorem

Coherence and \mathscr{I}-compatibility on the original space are taken care of by mere coherence on the (simpler) representation space.

WHY BOTHER?

SYMMETRY

Symmetry

Consider working with gambles f on an uncertain variable X in \mathscr{X}, so $f \in \mathscr{G}(\mathscr{X})$.

```
abstract
    gambles
G(\mathscr{X})
f
weak ordering
```

There is a symmetry behind X, modelled by a monoid \mathscr{T} of transformations $T: \mathscr{X} \rightarrow \mathscr{X}$:

- $T_{1} \circ T_{2} \in \mathscr{T}$ for all $T_{1}, T_{2} \in \mathscr{T}$;
- $\mathbf{1}_{\mathscr{T}} \circ T=T \circ \mathbf{1}_{\mathscr{T}}=T$ for all $T \in \mathscr{T}$.

Symmetry

Consider working with gambles f on an uncertain variable X in \mathscr{X}, so $f \in \mathscr{G}(\mathscr{X})$.

There is a symmetry behind X, modelled by a monoid \mathscr{T} of transformations $T: \mathscr{X} \rightarrow \mathscr{X}$:

- $T_{1} \circ T_{2} \in \mathscr{T}$ for all $T_{1}, T_{2} \in \mathscr{T}$;
$-\mathbf{1}_{\mathscr{T}} \circ T=T \circ \mathbf{1}_{\mathscr{T}}=T$ for all $T \in \mathscr{T}$.

The effect of the symmetry assessment is indifference:
You are indifferent between any gamble f and any of its
transforms $T f:=f \circ T$, so $f \equiv \mathscr{T} T f$.
This leads to a linear space of indifferent gambles

$$
\mathscr{I}_{\mathscr{T}}:=\operatorname{span}(\{f-T f: f \in \mathscr{G}(\mathscr{X}) \text { and } T \in \mathscr{T}\}) .
$$

Symmetry

Consistency condition

There are coherent sets of desirable gambles on \mathscr{X} that are $\mathscr{I}_{\mathscr{O}}$-compatible if and only if

```
abstract | gambles
    U }\mathscr{G}(\mathscr{X}
    u
    \succ
        weak ordering
    \equiv
```


Symmetry

Consistency condition

There are coherent sets of desirable gambles on \mathscr{X} that are $\mathscr{I}_{\mathscr{T}}$-compatible if and only if

```
abstract 
abstract 
abstract 
abstract 
abstract 
abstract 
abstract 
```

$$
\mathscr{I}_{\mathscr{T}} \cap \mathscr{G}(\mathscr{X})_{\succ 0}=\emptyset .
$$

Consequence:

$$
\sup g \geq 0 \text { for all } g \in \mathscr{I}_{\mathscr{T}} .
$$

Symmetry

Consistency condition

There are coherent sets of desirable gambles on \mathscr{X} that are $\mathscr{I}_{\mathscr{O}}$-compatible if and only if

```
abstract | gambles
    \mathscr{U}}\mathscr{G}(\mathscr{X}
    u f
    \succ ~ w e a k ~ o r d e r i n g ~
    \equiv
    \mathscr{I}
```

```
    \mathscr{I}
Consequence: }\mathscr{T}\mathrm{ is amenable!
\[
\sup g \geq 0 \text { for all } g \in \mathscr{I}_{\mathscr{T}} .
\]
```

Necessary and sufficient condition for the existence of invariant coherent previsions P on $\mathscr{G}(\mathscr{X})$:

$$
P(f)=P(T f) \text { for all gambles } f \in \mathscr{G}(\mathscr{X}) \text { and all } T \in \mathscr{T} .
$$

$\mathscr{M}_{\mathscr{T}}$ is the set of all such invariant coherent previsions.

Symmetry

Evaluation gambles

$\mathscr{G}^{*}\left(\mathscr{M}_{\mathscr{T}}\right)$ is the linear space of all evaluation gambles

abstract	gambles
\mathscr{U}	$\mathscr{G}(\mathscr{X})$
u	f
\succ	weak ordering
\equiv	$\equiv \mathscr{T}$
\mathscr{I}	$\mathscr{I}_{\mathscr{T}}$

$$
f^{*}: \mathscr{M}_{\mathscr{T}} \rightarrow \mathbb{R}: P \mapsto f^{*}(P):=P(f), \text { for all gambles } f
$$

Symmetry

Evaluation gambles

$\mathscr{G}^{*}\left(\mathscr{M}_{\mathscr{T}}\right)$ is the linear space of all evaluation gambles

$$
f^{*}: \mathscr{M}_{\mathscr{T}} \rightarrow \mathbb{R}: P \mapsto f^{*}(P):=P(f), \text { for all gambles } f
$$

Representation

Take as representation space $\mathscr{G}^{*}\left(\mathscr{M}_{\mathscr{T}}\right)$ and as representation operator the onto map

$$
\operatorname{rep}_{\mathscr{I}_{\mathscr{T}}}: \mathscr{G}(\mathscr{X}) \rightarrow \mathscr{G}^{*}\left(\mathscr{M}_{\mathscr{T}}\right): f \mapsto \operatorname{rep}_{\mathscr{I}_{\mathscr{T}}}(f):=f^{*}
$$

then, under some conditions,

$$
\operatorname{ker}\left(\operatorname{rep}_{\mathscr{I}_{\mathscr{T}}}\right)=\mathscr{I}_{\mathscr{T}}!
$$

CONDITIONING

Conditioning in probability theory

Consider working with gambles f on an uncertain variable X in \mathscr{X}.

```
abstract | gambles
U }\mathscr{G}(\mathscr{X}
u f
\succ ~ w e a k ~ o r d e r i n g ~
You start out with a coherent set of desirable gambles \(D\), and then get the new information that the event \(A \subset \mathscr{X}\) has occurred.
```


Conditioning in probability theory

Consider working with gambles f on an uncertain variable X in \mathscr{X}.

```
abstract | gambles
    U }\mathscr{G}(\mathscr{X}
    u
    \succ ~ w e a k ~ o r d e r i n g ~
    \equiv
```

You start out with a coherent set of desirable gambles D, and then get the new information that the event $A \subset \mathscr{X}$ has occurred.

Two gambles f and g that have the same behaviour on A are now indifferent to You:

$$
f \equiv_{A} g \Leftrightarrow \mathbb{I}_{A} f=\mathbb{I}_{A} g \text { and } \mathscr{I}_{A}=\left\{h \in \mathscr{G}(\mathscr{X}): \mathbb{I}_{A} h=0\right\} .
$$

Conditioning in probability theory

Consider working with gambles f on an uncertain variable X in \mathscr{X}.

```
abstract | gambles
    \mathscr{U}
    =
    rep g
    W
```

You start out with a coherent set of desirable gambles D, and then get the new information that the event $A \subset \mathscr{X}$ has occurred.

Two gambles f and g that have the same behaviour on A are now indifferent to You:

$$
f \equiv_{A} g \Leftrightarrow \mathbb{I}_{A} f=\mathbb{I}_{A} g \text { and } \mathscr{I}_{A}=\left\{h \in \mathscr{G}(\mathscr{X}): \mathbb{I}_{A} h=0\right\} .
$$

The representation operator rep $\mathscr{\mathscr { I }}_{A}$ is in this case

$$
\operatorname{rep}_{\mathscr{I}_{A}}: \mathscr{G}(\mathscr{X}) \rightarrow \mathscr{G}(A):\left.f \mapsto f\right|_{A} .
$$

The representation space is now $\mathscr{G}(A)$.

Conditioning in probability theory

But there is a problem!
abstract \mid gambles
$\mathscr{U} \quad \mathscr{G}(\mathscr{X})$
f
weak ordering

\equiv	\equiv_{A}
\mathscr{I}	\mathscr{I}_{A}

$$
\mathscr{I}_{A} \cap \mathscr{G}(\mathscr{X})_{\succ 0} \neq \emptyset .
$$

THERE ARE NO COHERENT AND \mathscr{I}_{A}-COMPATIBLE MODELS.

Conditioning in probability theory

But there is a problem!

```
abstract | gambles
    U }\mathscr{G}(\mathscr{X}
f
weak ordering
    #
```

$$
\mathscr{I}_{A} \cap \mathscr{G}(\mathscr{X})_{\succ 0} \neq \emptyset .
$$

THERE ARE NO COHERENT AND \mathscr{I}_{A}-COMPATIBLE MODELS.

REPRESENTATION CAN NEVER WORK!

Conditioning in probability theory

Interpretation to the rescue!

```
abstract | gambles
    \mathscr{U}}\mathscr{G}(\mathscr{X}
f
weak ordering
    三
```


Conditioning in probability theory

Interpretation to the rescue!

abstract	gambles
\mathscr{U}	$\mathscr{G}(\mathscr{X})$
u	f
\succ	weak ordering
\equiv	\equiv_{A}
\mathscr{I}	\mathscr{I}_{A}

On the representing space A :

$$
D\rfloor A:=\left\{g \in \mathscr{G}(A): g \mathbb{I}_{A} \in D\right\} \text { is coherent. }
$$

On the original space \mathscr{X} :

$$
\begin{aligned}
D \| A & :=\left\{f \in \mathscr{G}(\mathscr{X}): f \mathbb{I}_{A} \in D\right\} \\
& \left.=\operatorname{rep}_{\mathscr{\mathscr { F }}_{A}}^{-1}(D\rfloor A\right) \text { is } \mathscr{I}_{A} \text {-compatible but not coherent }
\end{aligned}
$$

Conditioning in probability theory

Interpretation to the rescue!

abstract	gambles
\mathscr{U}	$\mathscr{G}(\mathscr{X})$
u	f
\succ	weak ordering
\equiv	\equiv_{A}
\mathscr{I}	\mathscr{I}_{A}

On the representing space A :

$$
D\rfloor A:=\left\{g \in \mathscr{G}(A): g \mathbb{I}_{A} \in D\right\} \text { is coherent. }
$$

On the original space \mathscr{X} :

$$
\begin{aligned}
D \| A & :=\left\{f \in \mathscr{G}(\mathscr{X}): f \mathbb{I}_{A} \in D\right\} \\
& \left.=\operatorname{rep}_{\mathscr{I}_{A}}^{-1}(D\rfloor A\right) \text { is } \mathscr{I}_{A} \text {-compatible but not coherent }
\end{aligned}
$$

$$
\begin{aligned}
D \mid A & \left.:=\operatorname{rep}_{\mathscr{\mathscr { F }}_{A}}^{-1}(D\rfloor A\right) \cup \mathscr{G}(\mathscr{X})_{\succ 0} \\
& =\left\{f \in \mathscr{G}(\mathscr{X}): f \mathbb{I}_{A} \in D \text { or } f \succ 0\right\} .
\end{aligned}
$$

$D \mid A$ is as close as we can get to \mathscr{I}_{A}-compatibility while maintaining coherence.

QUESTIONS?

