
The Set Structure of Precision
Rabanus Derr1, Robert C. Williamson1,2

1University of Tübingen, 2Tübingen AI Center.

Modelling by Measurability Motivation I
What do the following scenarios have in common?
▶ Machine learning algorithm with restricted access: privacy

preservation, “not-missing-at-random” features,
accelerated database access, multi-measurement data [1].

▶ Incompatible Quantum physical quantities, e.g. location
and impulse [2].

▶ Preference ordering gives precise beliefs on events not
closed under intersections [3].

▶ Frequential probability [4].
(Pre-)Dynkin-System as domain of probability.

`

Probability on Pre-Dynkin-System Definitions
A pre-Dynkin-system D ⊆ 2Ω on Ω fulfills:
▶ ∅ ∈ D,
▶ D ∈ D implies Dc := Ω \D ∈ D,
▶ C,D ∈ D with C ∩D = ∅ implies C ∪D ∈ D.

A function µ : D → [0, 1] is a (finitely additive) probability on D, if:
▶ µ(∅) = 0 and µ(Ω) = 1.
▶ Let C,D ∈ D such that C ∩D = ∅, then µ(C ∪D) = µ(C) + µ(D).

Extendability = Coherence Linking together
▶ A probability µ : D → [0, 1] is extendable if there exists a probability µ′ : 2Ω → [0, 1]

such that µ′|D = µ.
▶ A probability on a pre-Dynkin-system is extendable if and only if it is coherent [5,6].
▶ There exists an inner and outer measure extension (µ∗, µ

∗) for every probability, and a
coherent extension (µD, µD) for every extendable probability.

System of Precision Motivation II
Imprecise Probability (IP) focuses on imprecision.
We ask: On which events are imprecise probabilities precise?
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The Set Structure of Precision Simple but Insightful
Let F be an algebra on Ω. Let ℓ : F → [0, 1] and u : F → [0, 1] be two set functions s.t.:
Normalization: u(∅) = ℓ(∅) = 0.
Conjugacy: u(A) = 1 − ℓ(Ac) for A,Ac ∈ F .
Subadditivity of u: for A,B ∈ F such that A∩B = ∅ then u(A∪B) ≤ u(A) +u(B).
Superadditivity of ℓ: for A,B ∈ F such that A∩B = ∅ then ℓ(A∪B) ≥ ℓ(A)+ ℓ(B).

Then u and ℓ define a finitely additive probability measure µ := u|D = ℓ|D on a pre-Dynkin-
system D ⊆ F .
Coherent imprecise probabilities [5] fulfill all the required properties.

(Dual) Credal Set Function Set System to IP
Let F be an algebra on Ω and P all probabilities on F . For a fixed finitely additive probability
ψ ∈ P , we define the credal set function,

m : 2F → 2P ,m(A ) := {ν ∈ P : ν(A) = ψ(A), ∀A ∈ A },
and the dual credal set function,

m◦ : 2P → 2F ,m◦(Q) := {A ∈ F : ν(A) = ψ(A),∀ν ∈ Q}.
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Set Systems ↔ IP A Lattice Duality
▶ The set m(Q) is a credal set, i.e. non-empty, weak⋆-closed and convex subset of P .
▶ The set m◦(A ) is a pre-Dynkin-system.
▶ The credal set function m and the dual credal set function m◦ form a so-called Galois

connection, i.e. A ⊆ m◦(Q) ⇔ Q ⊆ m(A ).
Galois connections induce a lattice duality between so-called bipolar-closed set systems and
credal sets.

Departing From Here Future
▶ Generalize from probabilities and set structures to expectation-type functional and

systems of gambles.
▶ Coherent imprecise probabilities parametrized by pre-Dynkin-systems versus other

parametrizations.
▶ Social intersectionality and pre-Dynkin-systems.

The FMLS group Foundations of Machine Learning Systems

Goal: to develop new and better foundations for machine learning (ML) systems

References
[1] E. Eban, E. Mezuman, and A. Globerson. Discrete Chebyshev classifiers. ICML, 2014.
[2] S. P. Gudder. Quantum probability spaces. Proceedings of the American Mathematical Society, 1969.
[3] L. G. Epstein and J. Zhang. Subjective probabilities on subjectively unambiguous events. Econometrica, 2001.
[4] G. Schurz and H. Leitgeb. Finitistic and frequentistic approximation of probability measures with or without σ-additivity. Studia

Logica, 2008.
[5] P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall, 1991.
[6] B. De Finetti. Theory of probability: A critical introductory treatment. John Wiley Sons, 1974/2017.

ISIPTA 2023 https://fm.ls


