Modelling by Measurability

What do the following scenarios have in common?

- Machine learning algorithm with restricted access: privacy preservation, "not-missing-at-random" features, accelerated database access, multi-measurement data [1].
- Incompatible Quantum physical quantities, e.g. location and impulse [2].
- Preference ordering gives precise beliefs on events not closed under intersections [3].
- Frequential probability [4]
(Pre-)Dynkin-System as domain of probability.

Probability on Pre-Dynkin-System

A pre-Dynkin-system $\mathcal{D} \subseteq 2^{\Omega}$ on Ω fulfills:

- $\emptyset \in \mathcal{D}$,
- $D \in \mathcal{D}$ implies $D^{c}:=\Omega \backslash D \in \mathcal{D}$
- $C, D \in \mathcal{D}$ with $C \cap D=\emptyset$ implies $C \cup D \in \mathcal{D}$

A function $\mu: \mathcal{D} \rightarrow[0,1]$ is a (finitely additive) probability on \mathcal{D}, if:

- $\mu(\emptyset)=0$ and $\mu(\Omega)=1$.
- Let $C, D \in \mathcal{D}$ such that $C \cap D=\emptyset$, then $\mu(C \cup D)=\mu(C)+\mu(D)$.

Extendability = Coherence

Linking together

- A probability $\mu: \mathcal{D} \rightarrow[0,1]$ is extendable if there exists a probability $\mu^{\prime}: 2^{\Omega} \rightarrow[0,1]$ such that $\left.\mu^{\prime}\right|_{\mathcal{D}}=\mu$
- A probability on a pre-Dynkin-system is extendable if and only if it is coherent [5,6].
- There exists an inner and outer measure extension $\left(\mu_{*}, \mu^{*}\right)$ for every probability, and a coherent extension $\left(\underline{\mu}_{\mathcal{D}}, \bar{\mu}_{\mathcal{D}}\right)$ for every extendable probability.

Definitions
Defint

System of Precision
Motivation II
Imprecise Probability (IP) focuses on imprecision.
We ask: On which events are imprecise probabilities precise?

The Set Structure of Precision Simple but Insightful Let \mathscr{F} be an algebra on Ω. Let $\ell: \mathscr{F} \rightarrow[0,1]$ and $u: \mathscr{F} \rightarrow[0,1]$ be two set functions s.t. Normalization: $u(\emptyset)=\ell(\emptyset)=0$.
Conjugacy: $u(A)=1-\ell\left(A^{c}\right)$ for $A, A^{c} \in \mathscr{F}$.
Subadditivity of u : for $A, B \in \mathscr{F}$ such that $A \cap B=\emptyset$ then $u(A \cup B) \leq u(A)+u(B)$. Superadditivity of $\ell:$ for $A, B \in \mathscr{F}$ such that $A \cap B=\emptyset$ then $\ell(A \cup B) \geq \ell(A)+\ell(B)$. Then u and ℓ define a finitely additive probability measure $\mu:=\left.u\right|_{\mathcal{D}}=\left.\ell\right|_{\mathcal{D}}$ on a pre-Dynkinsystem $\mathcal{D} \subseteq \mathscr{F}$.
Coherent imprecise probabilities [5] fulfill all the required properties.

(Dual) Credal Set Function

Set System to IP
Let \mathscr{F} be an algebra on Ω and P all probabilities on \mathscr{F}. For a fixed finitely additive probability $\psi \in P$, we define the credal set function,

$$
m: 2^{\mathscr{F}} \rightarrow 2^{P}, m(\mathscr{A}):=\{\nu \in P: \nu(A)=\psi(A), \forall A \in \mathscr{A}\}
$$

and the dual credal set function, $m^{\circ}: 2^{P} \rightarrow 2^{\mathscr{F}}, m^{\circ}(\mathcal{Q}):=\{A \in \mathscr{F}: \nu(A)=\psi(A), \forall \nu \in \mathcal{Q}\}$.

Set Systems \leftrightarrow IP

A Lattice Duality

- The set $m(\mathcal{Q})$ is a credal set, i.e. non-empty, weak ${ }^{\star}$-closed and convex subset of P.
- The set $m^{\circ}(\mathscr{A})$ is a pre-Dynkin-system.
- The credal set function m and the dual credal set function m° form a so-called Galois connection, i.e. $\mathscr{A} \subseteq m^{\circ}(Q) \Leftrightarrow Q \subseteq m(\mathscr{A})$.
Galois connections induce a lattice duality between so-called bipolar-closed set systems and credal sets.

Departing From Here

Future

- Generalize from probabilities and set structures to expectation-type functional and systems of gambles.
- Coherent imprecise probabilities parametrized by pre-Dynkin-systems versus other parametrizations.
- Social intersectionality and pre-Dynkin-systems.

The FMLS group

Foundations of Machine Learning Systems

Goal: to develop new and better foundations for machine learning (ML) systems

References

[1] E. Eban, E. Mezuman, and A. Globerson. Discrete Chebyshev classifiers. ICML, 2014.
[2] S. P. Gudder. Quantum probability spaces. Proceedings of the American Mathematical Society, 1969.
[3] L. G. Epstein and J. Zhang. Subjective probabilities on subjectively unambiguous events. Econometrica, 2001
[4] G. Schurz and H. Leitgeb. Finitistic and frequentistic approximation of probability measures with or without σ-additivity. Studia Logica, 2008.
[5] P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall, 1991.
[6] B. De Finetti. Theory of probability: A critical introductory treatment. John Wiley Sons, 1974/2017.

