

The Set Structure of Precision Rabanus Derr¹, Robert C. Williamson^{1,2}

¹University of Tübingen, ²Tübingen AI Center.

Modelling by Measurability

What do the following scenarios have in common?

- ► Machine learning algorithm with restricted access: privacy preservation, "not-missing-at-random" features, accelerated database access, multi-measurement data [1].
- ► Incompatible Quantum physical quantities, e.g. location and impulse [2].
- Preference ordering gives precise beliefs on events not closed under intersections [3].
- Frequential probability [4].

(Pre-)Dynkin-System as domain of probability.

Motivation I

System of Precision

Imprecise Probability (IP) focuses on imprecision. We ask: **On which events are imprecise probabilities precise?**

Probability on Pre-Dynkin-System

Definitions

A pre-Dynkin-system $\mathcal{D} \subseteq 2^{\Omega}$ on Ω fulfills:

- $\blacktriangleright \emptyset \in \mathcal{D},$
- \blacktriangleright $D \in \mathcal{D}$ implies $D^c \coloneqq \Omega \setminus D \in \mathcal{D}$,
- \blacktriangleright $C, D \in \mathcal{D}$ with $C \cap D = \emptyset$ implies $C \cup D \in \mathcal{D}$.
- A function $\mu \colon \mathcal{D} \to [0,1]$ is a (finitely additive) **probability on** \mathcal{D} , if:
- \blacktriangleright $\mu(\emptyset) = 0$ and $\mu(\Omega) = 1$.
- ▶ Let $C, D \in \mathcal{D}$ such that $C \cap D = \emptyset$, then $\mu(C \cup D) = \mu(C) + \mu(D)$.

Extendability = Coherence

Linking together

- ► A probability $\mu: \mathcal{D} \to [0,1]$ is **extendable** if there exists a probability $\mu': 2^{\Omega} \to [0,1]$ such that $\mu'|_{\mathcal{D}} = \mu$.
- ► A probability on a pre-Dynkin-system is extendable if and only if it is coherent [5,6].
- \blacktriangleright There exists an inner and outer measure extension (μ_*, μ^*) for every probability, and a coherent extension $(\mu_{\mathcal{D}}, \overline{\mu}_{\mathcal{D}})$ for every extendable probability.

The Set Structure of Precision Simple but Insightful

Let \mathscr{F} be an algebra on Ω . Let $\ell : \mathscr{F} \to [0,1]$ and $u : \mathscr{F} \to [0,1]$ be two set functions s.t.: **Normalization:** $u(\emptyset) = \ell(\emptyset) = 0$.

Conjugacy: $u(A) = 1 - \ell(A^c)$ for $A, A^c \in \mathscr{F}$.

Subadditivity of u: for $A, B \in \mathscr{F}$ such that $A \cap B = \emptyset$ then $u(A \cup B) \leq u(A) + u(B)$. **Superadditivity of** ℓ : for $A, B \in \mathscr{F}$ such that $A \cap B = \emptyset$ then $\ell(A \cup B) \ge \ell(A) + \ell(B)$. Then u and ℓ define a finitely additive probability measure $\mu \coloneqq u|_{\mathcal{D}} = \ell|_{\mathcal{D}}$ on a pre-Dynkinsystem $\mathcal{D} \subseteq \mathscr{F}$.

Coherent imprecise probabilities [5] fulfill all the required properties.

(Dual) Credal Set Function

Set System to IP Set Systems \leftrightarrow IP

A Lattice Duality

Let \mathscr{F} be an algebra on Ω and P all probabilities on \mathscr{F} . For a fixed finitely additive probability $\psi \in P$, we define the **credal set function**,

$$m\colon 2^{\mathscr{F}} \to 2^{P}, m(\mathscr{A}) \coloneqq \{\nu \in P \colon \nu(A) = \psi(A), \ \forall A \in \mathscr{A}\},\$$

and the **dual credal set function**,

 $m^{\circ}: 2^{P} \to 2^{\mathscr{F}}, m^{\circ}(\mathcal{Q}) \coloneqq \{A \in \mathscr{F}: \nu(A) = \psi(A), \forall \nu \in \mathcal{Q}\}.$

- \blacktriangleright The set $m(\mathcal{Q})$ is a credal set, i.e. non-empty, weak^{*}-closed and convex subset of P. ▶ The set $m^{\circ}(\mathscr{A})$ is a pre-Dynkin-system.
- \blacktriangleright The credal set function m and the dual credal set function m° form a so-called Galois connection, i.e. $\mathscr{A} \subseteq m^{\circ}(Q) \Leftrightarrow Q \subseteq m(\mathscr{A}).$

Galois connections induce a lattice duality between so-called bipolar-closed set systems and credal sets.

Departing From Here

Future

Tübingen Al

Center

Motivation II

- ► Generalize from probabilities and set structures to expectation-type functional and systems of gambles.
- Coherent imprecise probabilities parametrized by pre-Dynkin-systems versus other parametrizations.
- Social intersectionality and pre-Dynkin-systems.

The FMLS group

Foundations of Machine Learning Systems

Goal: to develop new and better foundations for machine learning (ML) systems

References

- **[1]** E. Eban, E. Mezuman, and A. Globerson. Discrete Chebyshev classifiers. ICML, 2014.
- [2] S. P. Gudder. Quantum probability spaces. Proceedings of the American Mathematical Society, 1969.
- **[3]** L. G. Epstein and J. Zhang. Subjective probabilities on subjectively unambiguous events. Econometrica, 2001.
- [4] G. Schurz and H. Leitgeb. Finitistic and frequentistic approximation of probability measures with or without σ -additivity. Studia Logica, 2008.
- **[5]** P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall, 1991.
- **[6]** B. De Finetti. Theory of probability: A critical introductory treatment. John Wiley Sons, 1974/2017.

https://fm.ls ISIPTA 2023