Eliciting hybrid probability-possibility functions and their decision evaluation models

D. Dubois, R. Guillaume, A. Rico
dubois@irit.fr, romain.guillaume@irit.fr, agnes.rico@univ-lyon1.fr

Sequential decision problems

Three assumptions are instrumental to enable an optimal strategy to be computed using dynamic programming:

- Dynamic Consistency: when following an optimal strategy and reaching a decision node, the best decision at this node is the one that had been considered so when computing this strategy, i.e. prior to applying it.
- Consequentialism: the best decision at each step of the problem only depends on potential consequences at this point.
- Tree Reduction: a compound lottery is equivalent to a simple one, assigning probabilities to final states.

Hybrid prob-poss measures

A hybrid $\pi-p$ measures that combine probabilistic and possibilistic behaviors in the uncertainty context

$$
\rho^{\alpha}(s)=\alpha \pi(s)+(1-\alpha) p(s), \quad \alpha \in[0,1]
$$

where p and π satisfy the constraint $p(s)=0$ if $\pi(s)<1$ for all $s . \rho^{\alpha}$ is a possibility distribution if $\alpha=1$, a probability distribution if $\alpha=0$. Note that $1 \leq \sum_{s \in S} \rho^{\alpha}(s) \leq$ n.
Hybrid distributions generate a class of decomposable capacities, which are monotonic set functions such that if $A \cap B=\emptyset$:

$$
\rho^{\alpha}(A \cup B)=S^{\alpha}\left(\rho^{\alpha}(A), \rho^{\alpha}(B)\right)
$$

$S^{\alpha}(x, y)=\left\{\begin{array}{l}\min (1, x+y-\alpha) \text { if } x>\alpha, y>\alpha \\ \max (x, y) \text { otherwise },\end{array}\right.$ In order to reduce probability-possibility lotteries, an operation $*$ is needed to generalize probabilistic independence. If A and B are disjoint sets independent of another set C :
$\rho^{\alpha}((A \cup B) \cap C)=S^{\alpha}\left(\rho^{\alpha}(A), \rho^{\alpha}(B)\right) * \rho^{\alpha}(C)$

$$
=S^{\alpha}\left(\rho^{\alpha}(A) * \rho^{\alpha}(C), \rho^{\alpha}(B) * \rho^{\alpha}(C)\right)
$$

This distributivity property is valid only when the operation $*$ is a triangular norm of the form
$x *_{\alpha} y=\left\{\begin{array}{l}\alpha+\frac{(x-\alpha)(y-\alpha)}{1-\alpha} \text { if } x>\alpha, y>\alpha \\ \min (x, y) \text { otherwise } .\end{array}\right.$

Example $1 \rho^{0.5}\left(\left\{s_{1}, s_{2}\right\}\right)=\max (0.2,0.8)=0.8$, $\rho^{0.5}\left(\left\{s_{1}, s_{3}\right\}\right)=\max (0.2,0.7)=0.7, \rho^{0.5}\left(\left\{s_{2}, s_{3}\right\}\right)=$ $0.8+0.7-0.5=1$.
\Rightarrow This distribution defines a convex set of probability distributions. We can express this probability set by inequalities:
$P\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right)=1,0 \leq P\left(\left\{s_{1}\right\}\right) \leq 0.2,0.3 \leq P\left(\left\{s_{2}\right\}\right) \leq$ $0.8,0.2 \leq P\left(\left\{s_{2}\right\}\right) \leq 0.7,0.3 \leq P\left(\left\{s_{1}, s_{2}\right\}\right) \leq 0.8$, $0.2 \leq P\left(\left\{s_{1}, s_{3}\right\}\right) \leq 0.7$ and $0.3 \leq P\left(\left\{s_{2}, s_{3}\right\}\right) \leq 1$.

Utility functionals

Example 2 Situation a has utility $\lambda_{a}=0.3$ and $b \lambda_{b}=0.7 . \alpha=0.5$

- Decision 1: $\pi_{a}=\pi_{b}=1$, and $p_{a}=p_{b}=0.5$
- Decision 2: $\pi_{a}=1, \pi_{b}=0.2$, and $p_{a}=1, p_{b}=0$.
- $E S^{O p t}(D 1)=0.5+0.5 *(0.7-0.5)=0.6 \succ_{E S O p t} E S^{O p t}(D 2)=$ $\max (\min (0.5,0.3), \min (0.1,0.7))=0.3$
- $E S^{P e s}(D 1)=0.5-0.5(1-0.3-0.5)=0.4 \succ_{E S P e s} E S^{P e s}(D 2)=0.5-(1-0.3-0.5)=0.3$

Elicitation of a prob-poss model from given weights

Example 3 Consider two distributions on $S=$ Hence no distinction between 1 and 2 can be made $\{a, b\}$

- 1: $\rho_{a}=\rho_{b}=0.6$
- 2: $\rho_{a}^{\prime}=\rho_{b}^{\prime}=0.5$

We can see that renormalizing these distributions in agreement with possibility or probability, the resulting two distributions 1 and 2 are the same:

$$
\begin{aligned}
& p_{a}^{1}=p_{a}^{2}=0.5=p_{b}^{\prime 1}=p_{b}^{\prime 2} \\
& \pi_{a}^{\prime 1}=\pi_{a}^{\prime 2}=1=\pi_{b}^{\prime 1}=\pi_{b}^{\prime 2}
\end{aligned}
$$ using this kind of transformation. Using the hybrid interpretation

- Case 1: with $\alpha=0.2, \pi_{a}=\pi_{b}=1$, and $p_{a}=p_{b}=0.5$ we can check that $\rho_{a}=\rho_{b}=$ $0.2+0.8 \cdot 0.5$, (a mixture between uniform probabilities and possibilities).
- Case 2: $\alpha=0, \pi_{a}=\pi_{b}=1$, and $p_{a}=p_{b}=$ $0.5=\rho_{a}=\rho_{b}, \quad$ (a pure probability distribution).

The question is: given a distribution of weights $\left(\rho_{1}, \ldots \rho_{n}\right) \in[0,1]^{n}$ on S such that $\sum_{i=1}^{n} \rho_{i} \geq 1$, does there exist a threshold $\alpha \in[0,1]$, a possibility distribution π and a probability distribution p on S, such that $\rho=\alpha \pi+(1-\alpha) p$? If yes, is the 3 -tuple (α, π, p) uniquely defined?

Elicitation from global ratings of loteries

The dataset is a set of tuples $\left(\pi^{j}, p^{j}, \beta^{j}\right) j \in J=\{1, \ldots, m\}$ where π^{j} is a possibility distribution, p^{j} is a probability distribution j is a strategy, and β^{j} is the global evaluation given by an expert.

The decision-maker is consistent across all four examples: $\alpha=0.4$ is a valid choice for the 4 items.

