A Comparison Between a Frequentist, Bayesian and Imprecise Bayesian Approach to Delay Time Maintenance

Une école de l'IMT

Marc Fischer (marc.fischer@emse.fr) Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Cen

ISIPTA 202W

 $\Delta Cost_F$

1428.5680

1033.6236

49.4582

29.7284

26.0579

23.4314

6.2836

0.0605

0.0000

1. Introduction

- Ultimate goal: optimise the inspection period T [1].
- Y = U + H, with Y: failure time, U: defect appearance time, H: delay time.

 $k_f \lambda_h e^{-k_f y} (k_f - \lambda_f) = k_f \lambda_h e^{-k_f y} (k_f - \lambda_f)$

4. Precise Bayesian approach

$$f(\lambda_h|S) = \frac{L(S|\lambda_h)f_{1,0}(\lambda_h)}{\int_{\lambda_h=0.01}^{0.1} L(S|\lambda_h)f_{1,0}(\lambda_h)d\lambda_h} \quad , \ E(\lambda_h|S) = \int_{\lambda_h=0.01}^{0.1} \lambda_h f(\lambda_h|S) d\lambda_h$$

$$f_Y(y) = k_f \lambda_h e^{-\kappa_f y} \int_{h=0}^{\infty} e^{(\kappa_f - \lambda_h)h} dh = \frac{j - k}{k_f - \lambda_h} \left(e^{(\kappa_f - \lambda_h)y} - 1 \right) \text{ when } \lambda_h \neq k_f.$$

We seek to minimise $D_1(T) = \frac{E(Downtime)}{E(Operating Time)}$ and $C_1(T) = \frac{E(Cost)}{E(Operating Time)}$.

 $E(Downtime) = p_{intact}d_i + p_{defect}(d_i + d_{defect}) + p_{failure}d_{br}$ $E(Operating Time) = E(Y|Y \le T)F_Y(T) + T(1 - F_Y(T))$

 $E(Cost) = p_{intact}c_i + p_{defect}(c_i + c_{defect}) + p_{failure}c_{br}$

2. Virtual case study

Pump where one defect progressively deteriorates into a failure. $k_f = 1/4$ defects/month, $\lambda_h = 9/100$ failures/defect/month

However, the enterprise only knows that $\lambda_h \in [0.01; 0.1]$ failures/defect/month. $d_i = 0.4 \text{ days}, d_{defect} = 2 \text{ days}, d_{br} = 28 \text{ days}, c_i = 110 \in c_{defect} = 1000 \in and c_{br} = 9000 \in and c_{br} = 9000 \in b$.

8 samples of failure times $S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \subset S_6 \subset S_7 \subset S_8$.

Sizes of the samples : 2, 5, 10, 20, 60, 200, 600, and 1000.

Uniform prior						Comparison with the frequentist approach							
	Sample Size	$E(\lambda_h S)$	$T_{D_1,opt,S}$	$T_{C_1,opt,S}$		nv	$\Delta Downtime_B$	$\Delta Downtime_{F}$	$e_F \mid \Delta Cost_B$				
	0	0.0550	72.1056	88.7999	10	2	5,5803	3.2699	2568,2310	14			
	2	0.0613	64.9950	75.5063		5	3.3308	2.4081	1469.9209	10			
	5	0.0664	60.5123	68.0865		10	0.6447	0.1278	261.8602	4			
	10	0.0785	52.9380	56.8024		20	0.2298	0.0766	91.3934	2			
	20	0.0829	50.7739	52.0280		60	0.1295	0.0654	54.4745	2			
	200	0.0843	40 2281	52.9580		200	0.0568	0.0589	22.8585	2			
	600	0.0881	49.2201	50.9285		600	0.0131	0.0159	6.2591				
	1000	0.0903	47.6823	49.8464		1000	0.0001	0.0002	0.0481				
	+∞	0.0900	47.7537	49.9327		+∞	0.0000	0.0000	0.0000				
		5.07.00	1		4) ()				1				

 $E_{\lambda_h} \Big(D_1(T, \lambda_h) \Big) = \int_{\lambda_h = 0.01}^{0.1} D_1(T, \lambda_h) f(\lambda_h | S) d\lambda_h \text{ and } E_{\lambda_h} \Big(C_1(T, \lambda_h) \Big) = \int_{\lambda_h = 0.01}^{0.1} C_1(T, \lambda_h) f(\lambda_h | S) d\lambda_h$ are minimised with respect to *T* [2].

5. Imprecise Bayesian approach

 $f_{1,0}(\lambda_h) : \text{prior } \underline{\text{uniform}} \text{ with respect to } \lambda_h \in [0.01; 0.1]$ $f_{2,0}(\lambda_h) = \frac{1}{\lambda_h^2} \frac{1}{\frac{1}{\lambda_{h,min}} - \frac{1}{\lambda_{h,max}}} : \text{prior } \underline{\text{uniform}} \text{ with respect to } E(H) = \frac{1}{\lambda_h} \in [10; 100]$ $te^{-\lambda_h t}$

Let $T_{D_1,opt,\lambda_{h,true}}$ be the optimal inspection period minimising $D_1(T)$ knowing $\lambda_{h,true}$ The enterprise will use this type of pumps in **6** factories for a period equal to t = 4 years of operational time.

Consequently, it is interesting to consider the quantities $\Delta Downtime = 6 \Big(D_1(T_{D_1,opt,S}, \lambda_{h,true}) - D_1(T_{D_1,opt,\lambda_{h,true}}, \lambda_{h,true}) \Big) t$ $\Delta Cost = 6 \Big(C_1(T_{C_1,opt,S}, \lambda_{h,true}) - C_1(T_{C_1,opt,\lambda_{h,true}}, \lambda_{h,true}) \Big) t$

Suboptimality of the decision based on sample *S*.

3. Frequentist approach Maximise the likelihood $L(\lambda_h|y_1, y_2, ..., y_n) = \prod_{i=1}^n f_Y(y_i) = \prod_{i=1}^n \frac{k_{f,0}\lambda_h}{k_{f,0} - \lambda_h} \left(e^{-\lambda_h y_i} - e^{-k_{f,0} y_i}\right).$

Sample Size	$\lambda_{h,MLE}$	$T_{D_1,opt,S}$	$T_{C_1,opt,S}$	Δ Downtime	⊿ Cost (€)
2	0.0662	60.3735	67.7731	3.2699	1428.5680
5	0.0690	58.3667	64.6834	2.4081	1033.6236
10	0.0960	45.6374	47.2540	0.1278	49.4582
20	0.0946	46.1062	47.8410	0.0766	29.7284
60	0.0860	49.3381	51.9885	0.0654	26.0579
200	0.0862	49.2551	51.8798	0.0589	23.4314
600	0.0880	48.5267	50.9301	0.0159	6.2836

ny	$min(T_{D_1,opt})$	$max(T_{D_1,opt})$	$\Delta Downtime_B$	$\Delta Downtime_F$	ny	$min(T_{C_1,opt})$	$max(T_{C_1,opt})$	$\Delta Cost_B$	$\Delta Cost_F$
0	51.7014	+00	9.8058		0	55.1021	+00	4837.4707	
2	51.5468	118.6333	5.5803	3.2699	2	54.9475	+00	2568.2310	1428.5680
5	51.3922	83.0805	3.3308	2.4081	5	54.6383	114.7689	1469.9209	1033.6236
10	49.0735	61.1306	0.6447	0.1278	10	51.5468	69.0140	261.8602	49.4582
20	48.3007	54.9475	0.2298	0.0766	20	50.7739	59.5848	91.3934	29.7284
60	48.6098	52.0105	0.1295	0.0654	60	50.9285	55.5658	54.4745	26.0579
200	48.4552	50.0010	0.0568	0.0589	200	50.9285	52.7834	22.8585	23.4314
600	48.1461	48.7644	0.0131	0.0159	600	50.4647	51.2376	6.2591	6.2836
1000	47.5278	47.8369	0.0001	0.0002	1000	49.5373	50.0010	0.0481	0.0605

1000	0.0902	47.6784	49.8361	0.0002	0.0605
+∞	0.0900	47.7537	49.9327	0.0000	0.0000

Poor decisions for <u>small</u> sample sizes !

Literature

[1] RD Baker and W Wang. Estimating the delay-time distribution of faults in repairable machinery from failure data. IMA Journal of Management Mathematics, 3(4): 259–281, 1991.

[2] Christian P Robert et al. The Bayesian choice: from decision-theoretic foundations to computational implementation, volume 2. Springer, 2007.

[3] Seamus Bradley. Imprecise Probabilities. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2019 edition, 2019.

[4] W Wang and X Jia. An empirical Bayesian based approach to delay time inspection model parameters estimation using both subjective and objective data. Quality and Reliability Engineering International, 23(1):95–105, 2007.

Imprecise decision intervals

6. Conclusion

Both frequentism and precise Bayesianism fare poorly for small samples.

Precise Bayesians can only consider this imprecision through *ad-hoc* reasoning.

Imprecise Bayesians can readily capture the difference between ignorance and knowledge through probability intervals [3].

This approach should be extended to more complex DTM models [1].