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Abstract

Belnap Dunn logic (BD) is a four-valued logic introduced to model reasoning with in-
complete or contradictory information. In this article, we show how Dempster-Shafer
(DS) theory can be used over BD in order to formalise reasoning with incomplete
and/or contradictory pieces of evidence. First, we discuss how to encode different
kinds of evidence, and how to interpret the resulting belief and plausibility functions.
Then, we discuss the behaviour of Dempster’s rule in this framework and present
a variation of the rule. Finally, we show how to construct credal sets of classical
probability measures based on this kind of evidence.
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Belief functions

Let L be a bounded lattice. A function bel : L → [0, 1] is a belief function if : (1)
bel(⊥) = 0 and bel(⊤) = 1, (2) bel is monotone, and (3) for all k ≥ 1 and all
a1, . . . , ak ∈ L, we have

bel

 ∨
1≤i≤k

ai

 ≥
∑

J⊆{1,...,k} and J ̸=∅
(−1)|J |+1 · bel

∧
j∈J

aj

 .

A mass fonction on L is a fonction m : L → [0, 1] s.t.
∑
x∈L

m(x) = 1. Every belief

function bel on a finite lattice can be represented via a mass function mbel and
vice-versa. We have bel(x) =

∑
y≤x

mbel(y).

Dempster-Shafer theory of evidence. Belief functions and their mass functions
are used to reason on the available information. Dempster-Shafer combination rule
allows the combining of pieces of evidence provided by different sources. Each
source is described by a mass function.

Let m1 and m2 be two mass functions on P(S). The result of Dempster–Shafer
combination rule m1⊕ m2 : P(S) → [0, 1] is: m1⊕ m2(X) = 0 if X = ∅, otherwise, we
have m1 ⊕ m2(X) equal to∑

{m1(X1) · m2(X2) | X1 ∩X2 = X}∑
{m1(X1) · m2(X2) | X1 ∩X2 ̸= ∅}

.

Conflict in DS theory.

In Dempster’s original combination rule, it is assumed that the sources are com-
pletely reliable, and hence any conflict between them is considered impossible. In
addition, it is assumed that the frame of discernment Ω is composed of a list of
mutually incompatible and exhaustive events. That is, every possible outcome is
listed in Ω and no two outcomes in Ω can take place at the same time.

Zadeh gives an example to show that DS-rule can lead to counterintuitive results
when it is used to aggregate pieces of evidence that are not fully reliable and with
a significant degree of conflict between them. Several modifications of DS-rule have
been proposed and studied in the literature to aggregate pieces of evidence both
from not fully reliable sources and from sources strongly contradicting each other.

In this work, we use an expansion of Belnap Dunn logic (BD) to represent and
combine conflicting evidence. BD was proposed to represent and reason about
incomplete and contradictory information.

BD logic: Reasoning with incomplete and
contradictory information

Intuitive interpretation. In BD, a statement p is either “supported by the information",
or “refuted by the information", or “neither supported nor refuted by the information",
or “both supported and refuted by the information". These four truth values are
respectively denoted T (true), F (false), N (neither ), B (both).

Let Prop be a finite set of proposional variables and Lit := Prop ∪ {¬p | p ∈ Prop}.
The langage LBD is defined via as follows: ϕ := p ∈ Prop | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ⊥ | ⊤.

A BD-model is a tuple M = ⟨W, v+, v−⟩ s.t. W ̸= ∅ is a finite set of states and
v+, v− : Prop → P(W ). The relations ⊨+ and ⊨− are defined as follows:

w ⊨+ ⊤ w ⊭+ ⊥ w ⊭− ⊤ w ⊨− ⊥
w ⊨+ p iff w ∈ v+(p) w ⊨− p iff w ∈ v−(p)

w ⊨+ ¬ϕ iff w ⊨− ϕ w ⊨− ¬ϕ iff w ⊨+ ϕ

w ⊨+ ϕ ∧ ϕ′ iff w ⊨+ ϕ and w ⊨+ ϕ′ w ⊨− ϕ ∧ ϕ′ iff w ⊨− ϕ or w ⊨− ϕ′

w ⊨+ ϕ ∨ ϕ′ iff w ⊨+ ϕ or w ⊨+ ϕ′ w ⊨− ϕ ∨ ϕ′ iff w ⊨− ϕ and w ⊨− ϕ′

In the article we use an equivalent semantics based on the De Morgan algebra 4.

Extensions of a formula.

|ϕ|+ = {w ∈ W | w ⊨+ φ} |ϕ|− = {w ∈ W | w ⊨− φ}
|ϕ|T = {w ∈ W | w ⊨+ φ and w ̸⊨− φ} |ϕ|F = {w ∈ W | w ̸⊨+ φ and w ⊨− φ}

Lindenbaum algebra. Let ∼= be the congruence relation on LBD defined as ϕ ∼= ϕ′

iff ϕ |=BD ϕ
′ and ϕ′ |=BD ϕ. The BD Lindenbaum algebra over LBD is the De Morgan

algebra ⟨{[ϕ]ϕ∈LBD
},∧,∨,¬⟩, where [ϕ] is the equivalence class of the formula ϕ,

¬[ϕ] = [¬ϕ] and [ϕ]⊙ [ψ] = [ϕ⊙ ψ] for ⊙ ∈ {∧,∨}. The CL Lindenbaum algebra over
LBD is the Boolean algebra defined similarly using |=CL.

The canonical BD-model over Prop is a tuple Mc = ⟨Wc, v
+, v−⟩, where Wc =

P(Lit) and the valuations v+, v− : Prop → Wc are defined as follows:

w ∈ v+(p) iff p ∈ w, w ∈ v−(p) iff ¬p ∈ w.

Probabilistic BD models

A (paraconsistent) probability assignment is a function p : LBD → [0, 1] s.t., for all
ϕ, ψ ∈ LBD, p(⊥) = 0 and p(⊤) = 1, p is monotone (if ϕ |=BD ψ, then p(ϕ) ≤ p(ψ)),
and p(ϕ ∨ ψ) + p(ϕ ∧ ψ) = p(ϕ) + p(ψ).

A classical probability assignment is a function p : LCL → [0, 1] s.t., for all
ϕ, ψ ∈ LCL, p(⊤) = 1, p is monotone (if ϕ |=CL ψ, then p(ϕ) ≤ p(ψ)), and
p(ϕ ∨ ψ) = p(ϕ) + p(ψ), for (ϕ ∧ ψ)|=CL⊥.

A probabilistic BD-model is a tuple M = ⟨W, v+, v−, µ⟩ such that ⟨W, v4⟩ is a BD-
model and µ : P(W ) → [0, 1] is a probability measure on P(W ). The induced proba-
bility assignment is defined as follows: for any formula ϕ ∈ LBD,

p(ϕ) = µ(|ϕ|+).
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DS theory over BD

We consider a mass function m on the canonical model Mc = ⟨Wc, v
+, v−⟩. We

note belm the induced belief function belm(X) =
∑
Y⊆X m(Y ).

Encoding of evidence on the canonical model. The statement “there is in-
formation supporting p” is true at every state w s.t. w ∈ v+(p). Therefore, one
encodes the statement “the information 100% supports p” via the mass function
mp : P(Wc) → [0, 1] such that m(|p|+) = 1. The mass function mTp such that
mTp(|p|+ ∩ (|p|−)c) = 1 encodes classical evidence supporting p, i.e. “the informa-
tion 100% supports p and there is no information available supporting ¬p”. We say
that “the information supports exactly p.”

Interpreting belief over BD-models. As the mass function is defined on the
powerset algebra of the canonical model, belm is a belief function and every
combination rule using only the fact that the underlying algebra is a powerset
algebra can still be used.

Lower and upper bounds on probability assignments. A mass function m over
Wc induces the following lower bound BelTB(ϕ) on p(ϕ):

Bel+(ϕ) := belm(|ϕ|+), Pl+(ϕ) := plm(|ϕ|+) = 1− belm((|ϕ|+)c).

Lower bounds for classical probabilities

What would be a ‘good classical’ piece of evidence for a statement ϕ in the
paraconsistent framework, and therefore which notions of “belief” would be the
most pertinent to estimate a lower bound on an unknown classical probability
assignment p on the formulas.

• Support based on classical ‘proofs’.

Let Qw := {l ∈ Lit | w ∈ v+(l) and w /∈ v−(l)}. A state w ∈ W supports ϕ if it
provides a classical ‘proof’ of ϕ, i.e. if

(∧
l∈Qw l

)
|=CL ϕ. Let |ϕ|CP be the set

of states which provide a classical ‘proof’ of ϕ and

BelCP(ϕ) = belm(|ϕ|CP) and PlCP(ϕ) = 1− BelCP(|¬ϕ|CP).

• Support from incomplete (resp. classical) states IC (resp. C). We con-
sider only incomplete, i.e., non-contradictory, (resp. classical, i.e., states cor-
responding to a classical valuation) states. Let IC ⊆ Wc (resp. C ⊆ Wc), be
the set of incomplete (resp. classical) states, and

BelIC(ϕ) := belm(|ϕ|T ∩ IC), PlIC(ϕ) = 1− belm(|ϕ|F ∩ IC)

BelC(ϕ) := belm(|ϕ|T ∩C) PlC(ϕ) = 1− belm(|ϕ|F ∩C)

Theorem. Let B be the CL Lindenbaum algebra over LBD, CM be the set of clas-
sical probability measures on B, B∗ = B ∖ {⊤B}, and for X ∈ {IC,C,CP},

FX := {µ ∈ CM | ∀a ∈ B, belX (a) ≤ µ(a)}.

For X ∈ {IC,C} (resp. X = CP), belX and plX are non-normal (resp. normal)
belief and plausibility functions on B, and, for a ∈ B∗ (resp. a ∈ B), belX (a) and
plX (a) provide optimal lower and upper bounds on FX . In addition,

∅ ⊊ FCP ⊆ FIC ⊆ FC.


