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Goal: to develop new and better foundations for machine learning (ML) systems
Research themes:
▶ Non-linear expectations and imprecise probability
▶ Interaction of probability theory and open problems in ML
▶ The style of reasoning of ML
▶ Information processing equalities

New models for data in ML An overarching agenda

Data has many imperfections:
▶ Data corruptions
▶ Dataset shift: not a single, stable distribution
=⇒ need to move beyond the i.i.d. assumption.
Our interest: to account for failure of statistical stability.

Strict frequentism + divergence
▶ Aim: principled way to model unstable data.
▶ Strict frequentism: sequence as the primitive – cf. von Mises collectives.
▶ When the “probability” does not exist, natural replacement is an upper prevision.

▶ Convergent case: probability is limiting relative frequency.
▶ Now: cluster points of relative frequencies yield coherent upper prevision.

▶ Works for all sequences and all events/gambles.
▶ Conversely, to any coherent upper prevision can construct a corresponding sequence.
▶ Conditioning principle: recover the generalized Bayes rule.
▶ Independence is subtle, requires paying attention to set systems.

Technical Setup Our setting

▶ Let Ω be an arbitrary set of outcomes. A gamble is a bounded function X : Ω → R.
▶ We assume a loss-based orientation: + is loss, − is gain.
▶ The set L∞ of bounded gambles forms a Banach space, with dual (L∞)∗ on which

we install the weak* topology.
▶ The set of linear previsions is compact under the weak* topology:

{E ∈ (L∞)∗ : E(X) ≥ 0 if X ≥ 0, E(χΩ) = 1} ⊂ (L∞)∗.

▶ Let #–Ω : N → Ω, an Ω-valued sequence of outcomes.
▶ Define sequence of linear previsions: #–

E(n) := X 7→ 1
n

∑n
i=1 X

(
#–Ω(i)

)
.

The forward direction From sequence to upper prevision

Define a coherent upper (resp. lower) prevision as:

R(X) := sup
{

E(X) : E ∈ CP( #–

E)
}

, ∀X ∈ L∞; R(X) := −R(−X).

Proposition:

CP

(
n 7→ 1

n

n∑
i=1

X
(

#–Ω(i)
))

=
{

E(X) : E ∈ CP( #–

E)
}

, ∀X ∈ L∞.

Therefore:
R(X) = lim sup

n→∞

1
n

n∑
i=1

X
(

#–Ω(i)
)

.

▶ When the limiting relative frequency does not exist, use the lim sup for decision
making! (due to loss-based orientation)

The converse direction From upper prevision to sequence

Theorem: Let |Ω| < ∞. Let R be a coherent upper prevision on L∞. There exists a
sequence #–Ω such that we can write R as (∀X ∈ L∞):

R(X) = sup
{

E(X) : E ∈ E #–Ω
}

, E #–Ω := CP
(

#–

E #–Ω

)
,

where #–

E #–Ω(n) = X 7→ 1
n

∑n
i=1 X

(
#–Ω(i)

)
, ∀X ∈ L∞.

▶ Strictly frequentist semantics for coherent upper previsions.
▶ Proof is constructive! Proof idea, visually:

▶ Walley & Fine [6] offer similar result for upper probabilities.

Conditional upper prevision Inspired by von Mises

Sequence of conditional linear previsions (χB is the indicator function of B):
#–

E(·|B)(n) := X 7→
n∑

i=1
(X · χB)

(
#–Ω(i)

)
/

n∑
i=1

χB

(
#–Ω(i)

)
.

Define the conditional upper prevision:
R(X|B) := sup

{
E(X) : E ∈ CP

(
#–

E(·|B)
)}

, ∀X ∈ L∞.

For R(χB) > 0, define the conditional set of desirable gambles as:
D #–Ω |B :=

{
X ∈ L∞ : R(XχB) ≤ 0

}
,

and a corresponding upper prevision, the generalized Bayes rule, as:
GBR(X|B) := inf

{
α ∈ R : X − α ∈ D #–Ω |B

}
.

Proposition: If R(χB) > 0, then R(X|B) = GBR(X|B).
▶ Naturally recover the generalized Bayes rule.
▶ Use this to define independence.

Related work Standing on the shoulder of giants

▶ Gorban: empirical motivation. [1]
▶ Von Mises: strictly frequentist approach, “collectives”. [3]
▶ Ivanenko: decision-theoretic approach to “non-stochastic” sequences (+ nets). [4]
▶ Walley: coherent upper previsions. [5]
▶ Walley & Fine: frequentist account of upper probabilities. [6]

▶ In addition: long line of work by Fine and collaborators.

Future directions What to do in practice?

▶ Need randomness assumptions!
▶ Introduce selection rules (à la von Mises) in a strictly frequentist way?
▶ Or pursue the approach of Fierens, Rêgo and Fine? [7]
▶ Connections to game-theoretic probability?
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