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The FMLS group Foundations of Machine Learning Systems The converse direction From upper prevision to sequence

Theorem: Let [)] < co. Let R be a coherent upper prevision on L. There exists a
sequence €) such that we can write R as (VX € L*):

R(X)=suwp{E(X): E€&z},E;=CP (Eﬁ) ,

where Eﬁ(n) =X -3 X (5(2)) VX € L™,
» Strictly frequentist semantics for coherent upper previsions.
» Proof is constructive! Proof idea, visually:

Goal: to develop new and better foundations for machine learning (ML) systems
Research themes:

» Non-linear expectations and imprecise probability

> Interaction of probability theory and open problems in ML » Walley & Fine [6] offer similar result for upper probabilities.
» The style of reasoning of ML

» Information processing equalities

Conditional upper prevision Inspired by von Mises

Sequence of conditional linear previsions (g is the indicator function of B):

New models for data in ML An overarching agenda . n N n N
Data has many imperfections: E(|B)(n) =X — Z (X - xB) (Q(Z)) /ZXB (Q(Z)) -
—1 i=1

» Data corruptions i=

. . T Define the conditional upper prevision:
» Dataset shift: not a single, stable distribution pper p

\

— need to move beyond the i.i.d. assumption. R(X|B) = sup {E(X): E € CP (E(|B)) [ VX € L™,

Our interest: to account for failure of statistical stability. For R(x5) > 0, define the conditional set of desirable gambles as:
G5 = {X € L*: R(Xxp) <0},
and a corresponding upper prevision, the generalized Bayes rule, as:

CBR(X|B) = mf{a cR: X —acDx }

|B
Proposition: If R(xp) > 0, then R(X|B) = GBR(X|B).
» Naturally recover the generalized Bayes rule.

» Use this to define independence.
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Technical Setup Our setting

» Let () be an arbitrary set of outcomes. A gamble is a bounded function X : {2 — R.
» We assume a loss-based orientation: + is loss, — is gain. » Gorban: empirical motivation. [1]
» The set L™ of bounded gambles forms a Banach space, with dual (L°°)* on which » Von Mises: strictly frequentist approach, “collectives”. [3]
we install the weak™® topology. » Ivanenko: decision-theoretic approach to “non-stochastic” sequences (+ nets). [4]
» The set of linear previsions is compact under the weak™ topology: » Walley: coherent upper previsions. [5]
(Ee (L% B(X)>0if X >0,E(xq) = 1} C (L) » Walley & Fine: frequentist account of upper probabilities. [6]

» In addition: long line of work by Fine and collaborators.
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» Let 2: N — (), an ()-valued sequence of outcomes.

» Define sequence of linear previsions: E(n) =X 3" X (5(@)) . .
Future directions What to do in practice?

» Need randomness assumptions!

. . » Introduce selection rules (a la von Mises) in a strictly frequentist way?
The forward direction From sequence to upper prevision - ( _ N ) | y Treq y
» Or pursue the approach of Fierens, Régo and Fine? [7]

Define a coherent upper (resp. lower) prevision as: » Connections to game-theoretic probability?

R(X) = sup {E(X); E e CP(E)} VX € L% R(X) -
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» When the limiting relative frequency does not exist, use the lim sup for decision
making! (due to loss-based orientation)
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