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Abstract

The Nonparametric Predictive Inference (NPI) approach is based on Hill’s assumption A(n) and uses
imprecise probabilities to quantify uncertainty [1, 3]. It is interesting to assess the performance of NPI

methods because of the imprecision involved. Furthermore, the existing methods used for evaluat-

ing the performance are mostly straightforward with precise probability but not trivial with imprecise

probability. In this study the performance of the semi-parametric predictive method introduced by

Coolen-Maturi et al. [2] has been evaluated in different aspects. A simulation study has been con-

ducted to study the performance of this method using various measures, and there are two scenarios

to consider. The first scenario assumes that the copulas used for simulating the data and performing

the inference are the same, while the second scenario assumes that they are different. The coverage

and width of the prediction intervals have been measured using different metrics. Moreover, the per-

formance of this method has been investigated using loss functions and interval scores.

Introduction

Coolen-Maturi et al. [2] have introduced a semi-parametric predictive method which combines a para-

metric copula with NPI. This method uses NPI for the marginals and then a parametric copula is used

to model the dependence between the variables and the parameter is estimated using the pseudo

maximum likelihood method. Supposing n bivariate observations (xi, yi) where i = 1, 2, ..., n observed
from n bivariate random quantities. This approach involves predicting a future bivariate observation,
denoted as (Xn+1, Yn+1), using NPI for the marginals. Subsequently, these random quantities are

transformed from the [−∞, ∞]2 plane to the [0, 1]2 plane, resulting in (X̃n+1, Ỹn+1). Under the as-
sumption A(n), the [0, 1]2 plane is divided into (n + 1)2 squares of equal sizes, and the probability of
X̃n+1 falling in the interval

(
i−1
n+1, i

n+1

)
is 1

n+1, and similarly for Ỹn+1 where i, j = 1, 2, ..., n + 1.

The probability of the transformed future observation falling within any of the (n + 1)2 squares in the
partitioned plane [0, 1]2 is given by hij(θ̂) = PC

(
X̃n+1 ∈

(
i−1
n+1, i

n+1

)
, Ỹn+1 ∈

(
j−1
n+1, j

n+1

)
|θ̂
)

.
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where i, j = 1, 2, ..., n + 1, and PC(.|θ̂) denotes the copula probability with the estimated parameter θ̂.

Example

Considering the event of interest Tn+1 = Xn+1 + Yn+1, and the lower and upper probabilities for the
event Tn+1 > t are considered. The lower probability is defined as the sum of hij(θ̂) for all (i, j) ∈ Lt,

where Lt = {(i, j) : xi−1 + yj−1 > t, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1}. The upper probability, on the other
hand, is the sum of hij(θ̂) for all (i, j) ∈ Ut, where Ut = {(i, j) : xi+yj > t, 1 ≤ i ≤ n+1, 1 ≤ j ≤ n+1}.
A simulation studywas conducted to assess the performance of the method, with the event of interest

being Tn+1 > t. The simulation of n + 1 pairs of (xi, yi) where i = 1, 2, ..., n + 1 was repeated N times

and for each simulation run, the first n pairs are used as the data, and the last pair with i = n + 1 is
used as a future observation to assess the predictive inference. Considering the last pair of the run r
(r = 1, ..., N ) is (xr

n+1, yr
n+1), then trn+1 is defined as trn+1 = xr

n+1 + yr
n+1. For a given q ∈ (0, 1), and trq

and trq are the inverse values of the lower and upper probabilities for the event Tn+1 > t , respectively.
Here, l and u were defined as follows:

l = 1
N

N∑
r=1

1(trn+1 ≥ trq) and u = 1
N

N∑
r=1

1(trn+1 ≥ trq). (1)

The aim of this performance evaluation method is to ensure that the inequality l ≤ q ≤ u is satisfied.

Performance evaluation measures

The followingmeasureswere used to study the performance of the semi-parametric predictivemethod:

Prediction Interval Coverage Probability (PICP)

PICP = 1
Nc

Nc∑
k=1

I[lk,uk](q), where I[lk,uk](q)

{
1 if q ∈ [lk, uk],
0 otherwise.

(2)

Where Nc is the number of prediction intervals.

Mean Prediction Interval Width (MPIW)

MPIW = 1
Nc

Nc∑
k=1

(uk − lk). (3)

MPIWq∈[lk,uk] and MPIWq /∈[lk,uk]: These measures separate intervals into two groups: those
including q and those not including q. The average of width of intervals that include q, denoted as
MPIWq∈[lk,uk], and the average width of the intervals that do not include q, denoted as
MPIWq /∈[lk,uk].

Quadratic Loss Function (LQ) and Absolute Loss Function (LAbs)Where (p) is the predicted value.

LQ = (q − p)2 and LAbs = |q − p|. (4)

Where p is the predicted value.

interval score

IS(c1,c2,c3)(l, u, q) = c1(u − l) + c2 max{0, l − q} + c3 max{0, q − u}, (5)

where
∑3

i=1 ci = 1 and ci ≥ 0.

Simulation study

In this study, the following algorithm is used to get Nc prediction intervals of [lk, uk] then the previous
performance evaluation measures can be used. Two scenarios are assumed here, the first scenario

assumes the copula family used for simulating the data and inference is Normal. But the second

scenario assumes Frank and Clayton copulas are used for inference and Normal copula for simulating

the data.

Algorithm

Algorithm 1: Computing performance evaluation measures
Result: Compute performance evaluation measures
for k = 1 to Nc do

for r = 1 to N do
Generate n + 1 pairs sample from a specified copula and use the first n pairs for the semi-parametric method
and the last pair is used for assessing the performance of the method;

Estimate the copula parameter θ̂ using the first n paired samples;

Compute the probabilities hij(θ̂) ;
Compute tr

n+1=xr
n+1+yr

n+1 and tr
q and t

r
q;

Compute l and u using;

end
Return lk and uk;

end

Simulation results

Table 1. Simulation from Normal; when q = 0.75 and τ = 0.5

Normal copula is assumed for inference

n = 20 n = 50
PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.87 0.0522 0.0530 0.0463

PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.46 0.0219 0.0239 0.0202

Frank copula is assumed for inference

n = 20 n = 50
PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.80 0.0497 0.0509 0.0450

PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.43 0.0213 0.0219 0.0208

Clayton copula is assumed for inference

n = 20 n = 50
PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.80 0.0492 0.0510 0.0421

PICP MPIW MPIWq∈[lk,uk] MPIWq /∈[lk,uk]
0.34 0.0220 0.0229 0.0215
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0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

A
ve

ra
ge

_M
ax

im
um

_L
os

s

n

20

50

(a) Quadratic loss

Normal Frank Clayton
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(b) Absolute loss

Figure 1. Average of maximum losses when simulation from Normal and τ = 0.5
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(a) c1 = c2 = c3 = 1
3

Normal Frank Clayton
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(b) c1 = 0.2, c2 = c3 = 0.4

Figure 2. Interval scores when simulation from Normal and τ = 0.5

Discussion

The presented table 1 demonstrates a consistent pattern across all copula families used for inference,

indicating that when the sample size is increased from 20 to 50, the values of performance evaluation

metrics decreases. Notably, the comparing the values of MPIWq∈[lk,uk] and MPIWq /∈[lk,uk] reveals
that intervals including the value q tend to be slightly wider than those that exclude q.

Figure 1 shows that whether employing a quadratic or absolute loss function, the average maximum

loss of prediction intervals is higher for n = 20 compared to n = 50. This demonstrates that increasing
the sample size leads to narrower intervals with the value q being close to the prediction intervals
resulting in lower average maximum loss. Remarkably, when q = 0.5 with using Clayton copula for
inference yields significantly larger average maximum loss compared to other scenarios. In addition,

using Normal or Frank copulas for inference results prediction intervals with similar characteristics.

The results of interval scores are presented as box plots in Figure 2. It is observed that the interval

scores tend to be higher for n = 20 compared to n = 50. In case of c1 = 0.2, c2 = c3 = 0.4 there are
slight differences between the interval scores for n = 20 and n = 50. When n = 50, smaller interval
scores indicate better performance, even if the intervals do not include the value q in many cases.

Conclusion

The simulation results indicate that increasing the sample size leads to more true values falling outside

the prediction intervals while the widths of the intervals decrease. However, the true values are close

to the prediction intervals in case the intervals do not include the values. Using large sample sizes

leads to smaller imprecision, which results in the prediction interval unlikely to include the real value.

On this basis, the importance of using loss functions increases to measure the maximum and minimum

distances between the real value and the intervals. Absolute loss function gives less consideration

to the outliers than the quadratic loss function. Thus if the application pays attentions to outliers,

quadratic loss function is advised to be used.
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