Balanced Games

Michel GRABISCH

Université Paris I Panthéon-Sorbonne Centre d'Economie de la Sorbonne Paris School of Economics, Paris, France • Cooperative games with transferable utility (*TU-games*) are merely set functions on a finite set vanishing on the empty set.

- Cooperative games with transferable utility (*TU-games*) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.

- Cooperative games with transferable utility (*TU-games*) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the *core*: it has its counterpart in all of the above mentioned fields.

- Cooperative games with transferable utility (*TU-games*) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the *core*: it has its counterpart in all of the above mentioned fields.
- Games with a nonempty core are the *balanced games*, where the key notion behind is the notion of *balanced collection of sets*.

- Cooperative games with transferable utility (*TU-games*) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the *core*: it has its counterpart in all of the above mentioned fields.
- Games with a nonempty core are the *balanced games*, where the key notion behind is the notion of *balanced collection of sets*.
- This talk is about balanced collections and balanced games, whose structure remains largely unexplored.

個 と く き と く き と

Outline

1. TU-games and the like

- 2. Balanced collections
- 3. Applications
- 4. Geometry of the set of balanced games

• $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.

▲圖▶ ▲理▶ ▲理▶

æ

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

 Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the *solution* of the game. Usually, one impose x(N) = v(N) (*efficiency: share the whole cake*).

・ 回 ト ・ ヨ ト ・ ヨ ト

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the *solution* of the game. Usually, one impose x(N) = v(N) (*efficiency: share the whole cake*).
- One of the best known solution: the core (Gillies, 1953)

$$C(v) = \{x \in \mathbb{R}^N : x(S) \ge v(S) \forall S, x(N) = v(N)\}$$

(coalitional rationality, or stability of the grand coalition N)

In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- The *lower envelope* of a convex set of probability measures is a capacity (*imprecise probabilities* (Walley, 1991)).

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- The *lower envelope* of a convex set of probability measures is a capacity (*imprecise probabilities* (Walley, 1991)).
- Probability measures are additive capacities: $v(A \cup B) = v(A) + v(B)$ for disjoint A, B

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- The *lower envelope* of a convex set of probability measures is a capacity (*imprecise probabilities* (Walley, 1991)).
- Probability measures are additive capacities: $v(A \cup B) = v(A) + v(B)$ for disjoint A, B
- The core of a capacity v is:

$$\mathcal{C}(v) = \{x \in \mathbb{R}^{\mathsf{N}} \, : \, x(\mathcal{S}) \geq v(\mathcal{S}) orall \mathcal{S}, x(\mathsf{N}) = 1\}$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- The *lower envelope* of a convex set of probability measures is a capacity (*imprecise probabilities* (Walley, 1991)).
- Probability measures are additive capacities: $v(A \cup B) = v(A) + v(B)$ for disjoint A, B
- The core of a capacity v is:

$$\mathcal{C}(\mathbf{v}) = \{x \in \mathbb{R}^{\mathsf{N}} \, : \, x(\mathcal{S}) \geq \mathbf{v}(\mathcal{S}) \forall \mathcal{S}, x(\mathcal{N}) = 1\}$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

• In combinatorial optimization, when v is submodular, it can be seen as the rank function of a matroid. Then the (anti-)core of v is the base polyhedron of v (Edmonds, 1970).

・ロト ・回ト ・ヨト ・ヨト

Outline

- 1. TU-games and the like
- 2. Balanced collections
- 3. Applications
- 4. Geometry of the set of balanced games

< E > < E >

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S \mathbf{1}^S = \mathbf{1}^N$$

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

• $(\lambda_S)_{S \in \mathcal{B}}$ are the *balancing weights*.

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S \mathbf{1}^S = \mathbf{1}^N$$

- $(\lambda_S)_{S \in \mathbb{B}}$ are the *balancing weights*.
- Examples:

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

- $(\lambda_S)_{S \in \mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S \mathbf{1}^S = \mathbf{1}^N$$

- $(\lambda_S)_{S\in\mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)
 - n = 3: $\left\{\overline{12}, \overline{13}, \overline{23}\right\}$ with $\lambda = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S \mathbf{1}^S = \mathbf{1}^N$$

- $(\lambda_S)_{S\in\mathbb{B}}$ are the *balancing weights*.
- Examples:

• Every partition (balancing weights: 1)
•
$$n = 3$$
: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
• $n = 4$: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3})$.

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

- $(\lambda_S)_{S\in\mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)

•
$$n = 3$$
: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

- n = 4: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}).$
- A balanced collection is *minimal* if no proper subcollection is balanced (equivalently, the balancing weights are unique).

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S \mathbf{1}^S = \mathbf{1}^N$$

- $(\lambda_S)_{S\in\mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)

•
$$n = 3$$
: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

- n = 4: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}).$
- A balanced collection is *minimal* if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond n = 4. A recursive algorithm has been proposed by Peleg (1965).

• A collection of subsets of *N* which does not contain a balanced collection is said to be *unbalanced*. It is *maximal* if no supercollection of it is unbalanced (Billera et al., 2012).

• A collection of subsets of *N* which does not contain a balanced collection is said to be *unbalanced*. It is *maximal* if no supercollection of it is unbalanced (Billera et al., 2012).

• Equivalently, 1^N is *not* in the cone generated by the 1^S , $S \in \mathcal{B}$.

- A collection of subsets of *N* which does not contain a balanced collection is said to be *unbalanced*. It is *maximal* if no supercollection of it is unbalanced (Billera et al., 2012).
- Equivalently, 1^N is *not* in the cone generated by the 1^S , $S \in \mathcal{B}$.
- \bullet unbalanced \rightarrow not balanced, but not the converse!

- A collection of subsets of *N* which does not contain a balanced collection is said to be *unbalanced*. It is *maximal* if no supercollection of it is unbalanced (Billera et al., 2012).
- Equivalently, 1^N is *not* in the cone generated by the 1^S , $S \in \mathcal{B}$.
- \bullet unbalanced \rightarrow not balanced, but not the converse!
- What is known so far:

n	Nb of maximal unbalanced collections
2	2
3	6
4	32
5	370
6	11,292
7	1,066,044
8	347,326,352
9	419,172,756,930

• By Farkas Lemma, it can be shown that a collection S of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^N$ such that $\sum_{i \in N} y_i = 0$ and $\sum_{i \in S} y_i > 0$ for all $S \in S$.

- By Farkas Lemma, it can be shown that a collection S of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^N$ such that $\sum_{i \in N} y_i = 0$ and $\sum_{i \in S} y_i > 0$ for all $S \in S$.
- Examples:

- By Farkas Lemma, it can be shown that a collection S of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^N$ such that $\sum_{i \in N} y_i = 0$ and $\sum_{i \in S} y_i > 0$ for all $S \in S$.
- Examples:
 - (i) For n = 3: {{1,2}, {1,3}, {1}}, y = (2, -1, -1);

- By Farkas Lemma, it can be shown that a collection S of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^N$ such that $\sum_{i \in N} y_i = 0$ and $\sum_{i \in S} y_i > 0$ for all $S \in S$.
- Examples:

(i) For
$$n = 3$$
: {{1,2}, {1,3}, {1}}, $y = (2, -1, -1)$;
(ii) For $n = 4$: {{1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}}, $y = (3, -1, -1, -1)$.

- By Farkas Lemma, it can be shown that a collection S of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^N$ such that $\sum_{i \in N} y_i = 0$ and $\sum_{i \in S} y_i > 0$ for all $S \in S$.
- Examples:

(i) For
$$n = 3$$
: {{1,2}, {1,3}, {1}}, $y = (2, -1, -1)$;
(ii) For $n = 4$: {{1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}}, $y = (3, -1, -1, -1)$.

In the hyperplane H_N = {x ∈ ℝ^N | x(N) = 0}, consider the hyperplanes {x ∈ H_N | x(S) = 0}, for all S ∈ 2^N \ {Ø, N} (only 2ⁿ⁻¹ - 1 distinct ones). There is a bijection between maximal unbalanced collections and regions induced by the hyperplane arrangement, which shows that maximal u.c. have 2ⁿ⁻¹ - 1 sets.

・ 回 と ・ ヨ と ・ モ と

Figure: The restricted all-subset arrangement for n = 3 in the plane H_N . Arrows indicate the normal vector to the hyperplane of the same color. The 6 maximal unbalanced collections (subsets are written without comma and braces) correspond to the 6 regions.

10/34

M. Grabisch ©2023

Balanced Games

Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

Players	Minimal balanced collections	CPU time
1	1	-
2	2	\sim 0.00 sec
3	6	$\sim 0.01~{ m sec}$
4	42	$\sim 0.03~{ m sec}$
5	1 292	$\sim 1.05~{ m sec}$
6	200 214	\sim 4 min 4 sec
7	132 422 036	\sim 63 hours

Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

Players	Minimal balanced collections	CPU time
1	1	-
2	2	$\sim 0.00~{ m sec}$
3	6	$\sim 0.01~{ m sec}$
4	42	$\sim 0.03~{ m sec}$
5	1 292	$\sim 1.05~{ m sec}$
6	200 214	\sim 4 min 4 sec
7	132 422 036	\sim 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of Integer Sequences (Sloane, 1964)) under the number A355042 (see https://oeis.org/A355042).

Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

Players	Minimal balanced collections	CPU time
1	1	-
2	2	$\sim 0.00~{ m sec}$
3	6	$\sim 0.01~{ m sec}$
4	42	$\sim 0.03~{ m sec}$
5	1 292	$\sim 1.05~{ m sec}$
6	200 214	\sim 4 min 4 sec
7	132 422 036	\sim 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of Integer Sequences (Sloane, 1964)) under the number A355042 (see https://oeis.org/A355042). N.B. 2: We have stored the complete list of m.b.c. till n = 7

• Consider the polytope W(N) defined by

$$W(N) = \left\{ \lambda \in \mathbb{R}^{2^N \setminus \{\emptyset\}} \, : \, \sum_{S \in 2^N \setminus \{\emptyset\}} \lambda_S 1^S = 1^N, \lambda_S \geq 0, orall S \in 2^N \setminus \{\emptyset\}
ight\}$$

• Consider the polytope W(N) defined by

$$W(N) = \left\{ \lambda \in \mathbb{R}^{2^N \setminus \{\emptyset\}} : \sum_{S \in 2^N \setminus \{\emptyset\}} \lambda_S 1^S = 1^N, \lambda_S \ge 0, \forall S \in 2^N \setminus \{\emptyset\}
ight\}$$

 It is easy to check that the vertices of W(N) are in bijection with the minimal balanced collections on N, taking B := {S : λ_S > 0}.

• Consider the polytope W(N) defined by

$$\mathcal{W}(\mathcal{N}) = \left\{ \lambda \in \mathbb{R}^{2^{\mathcal{N}} \setminus \{\emptyset\}} : \sum_{S \in 2^{\mathcal{N}} \setminus \{\emptyset\}} \lambda_{S} 1^{S} = 1^{\mathcal{N}}, \lambda_{S} \ge 0, \forall S \in 2^{\mathcal{N}} \setminus \{\emptyset\}
ight\}$$

- It is easy to check that the vertices of W(N) are in bijection with the minimal balanced collections on N, taking B := {S : λ_S > 0}.
- Consequently, generating all minimal balanced collections of N amounts to finding all vertices of W(N).

• Consider the polytope W(N) defined by

$$\mathcal{W}(\mathcal{N}) = \left\{ \lambda \in \mathbb{R}^{2^{\mathcal{N}} \setminus \{ \emptyset \}} \, : \, \sum_{\mathcal{S} \in 2^{\mathcal{N}} \setminus \{ \emptyset \}} \lambda_{\mathcal{S}} 1^{\mathcal{S}} = 1^{\mathcal{N}}, \lambda_{\mathcal{S}} \geq 0, orall \mathcal{S} \in 2^{\mathcal{N}} \setminus \{ \emptyset \}
ight\}$$

- It is easy to check that the vertices of W(N) are in bijection with the minimal balanced collections on N, taking B := {S : λ_S > 0}.
- Consequently, generating all minimal balanced collections of N amounts to finding all vertices of W(N).
- This *vertex enumeration* problem can be solved by the Avis-Fukuda method (1992). Here are the CPU times when n = 6:

Peleg's algorithm	Avis-Fukuda algorithm	
4mn 4s	29mn 24s	

(pycddlib package used for Avis-Fukuda algorithm)

Outline

- 1. TU-games and the like
- 2. Balanced collections
- 3. Applications
 - 3.1. Nonemptiness of the core
 - 3.2. Exactness, effectiveness
 - 3.3. Core stability
- 4. Geometry of the set of balanced games

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $(\lambda_{S}^{\mathcal{B}})_{S \in \mathcal{B}}$, we have

$$\sum_{S\in\mathcal{B}}\lambda_S^{\mathcal{B}}v(S)\leq v(N).$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B} = \{N\}$.

Note: Games satisfying this condition are called *balanced*

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $(\lambda_{\mathcal{S}}^{\mathcal{B}})_{\mathcal{S}\in\mathcal{B}}$, we have

$$\sum_{S\in\mathcal{B}}\lambda_S^{\mathcal{B}}v(S)\leq v(N).$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B} = \{N\}$.

Note: Games satisfying this condition are called *balanced* Equivalently, one can solve the following LP and check if the value of the LP is equal to v(N):

min
$$x(N)$$

s.t. $x(S) \ge v(S), \forall S \in 2^N \setminus \{\emptyset\}$

Comparison of CPU time (native simplex method available in Python), run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley	LP
0.96s	24.85s

(Laplace Mermoud, G. and Sudhölter, 2023)

Comparison of CPU time (native simplex method available in Python), run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley	LP
0.96s	24.85s

(Laplace Mermoud, G. and Sudhölter, 2023)

Important note: m.b.c. do not depend on the game, only on N. Hence they are generated only once for ever.

Outline

- 1. TU-games and the like
- 2. Balanced collections
- 3. Applications
 - 3.1. Nonemptiness of the core
 - 3.2. Exactness, effectiveness
 - 3.3. Core stability
- 4. Geometry of the set of balanced games

• A coalition S is *exact* if x(S) = v(S) for some $x \in C(v)$.

- **□** ► < **□** ►

< ≣ ▶

- A coalition S is *exact* if x(S) = v(S) for some $x \in C(v)$.
- A coalition S is effective if x(S) = v(S) for all x ∈ C(v). We denote by E(v) the set of effective coalitions.

- A coalition S is *exact* if x(S) = v(S) for some $x \in C(v)$.
- A coalition S is *effective* if x(S) = v(S) for all x ∈ C(v). We denote by E(v) the set of effective coalitions.
- For any coalition S we define the game (N, v^S) by

$$v^{S}(T) = \begin{cases} v(N) - v(S), & \text{if } T = N \setminus S \\ v(T), & \text{otherwise.} \end{cases}$$

- A coalition S is *exact* if x(S) = v(S) for some $x \in C(v)$.
- A coalition S is *effective* if x(S) = v(S) for all x ∈ C(v). We denote by E(v) the set of effective coalitions.
- For any coalition S we define the game (N, v^S) by

$$v^{S}(T) = egin{cases} v(N) - v(S), & ext{if } T = N \setminus S \ v(T), & ext{otherwise.} \end{cases}$$

Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, v^S) is balanced.

- A coalition S is *exact* if x(S) = v(S) for some $x \in C(v)$.
- A coalition S is *effective* if x(S) = v(S) for all x ∈ C(v). We denote by E(v) the set of effective coalitions.
- For any coalition S we define the game (N, v^S) by

$$v^{S}(T) = egin{cases} v(N) - v(S), & ext{if } T = N \setminus S \ v(T), & ext{otherwise.} \end{cases}$$

Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, v^S) is balanced.

Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

 $\mathcal{E}(v)$ is the union of all the minimal balanced collections \mathfrak{B} such that

$$\sum_{S\in\mathcal{B}}\lambda_S^{\mathcal{B}}v(S)=v(N).$$

Outline

- 1. TU-games and the like
- 2. Balanced collections

3. Applications

- 3.1. Nonemptiness of the core
- 3.2. Exactness, effectiveness

3.3. Core stability

4. Geometry of the set of balanced games

• Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (imputations)

▲圖> ▲理> ▲理>

3

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:

・ 回 と ・ ヨ と ・ ヨ と

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$

(1日) (日) (日)

2

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \leq v(S)$

(本部) (문) (문) (문

- Let X(v) = {x ∈ ℝ^N : x(N) = v(N)} and I(v) = {x ∈ X(v) : x_i ≥ v({i}), ∀i ∈ N} (*imputations*)
 Let x, y ∈ X(v) and S ∈ 2^N \ {Ø, N}. Then x dominates y via S (x dom_S y) if: • x_i > y_i, ∀i ∈ S (C) = (C)
 - $x(S) \leq v(S)$
- x dominates y $(x \operatorname{dom} y)$ if $x \operatorname{dom}_S y$ for some S

(1日) (日) (日)

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \leq v(S)$
- x dominates y (x dom y) if x dom₅ y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \leq v(S)$
- x dominates y (x dom y) if x dom₅ y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies
 - external stability: $\forall y \notin U, \exists x \in U$ such that $x \operatorname{dom} y$;

・聞き ・ ほき・ ・ ほう

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \le v(S)$
- x dominates y (x dom y) if x dom_S y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies
 - external stability: $\forall y \notin U, \exists x \in U \text{ such that } x \operatorname{dom} y$;
 - internal stability: $x \operatorname{dom} y \And y \in U \implies x \notin U$.

イロン イヨン イヨン ・ ヨン

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \le v(S)$
- x dominates y (x dom y) if x dom_S y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies
 - external stability: $\forall y \notin U, \exists x \in U \text{ such that } x \operatorname{dom} y$;
 - internal stability: $x \operatorname{dom} y \And y \in U \implies x \notin U$.
- Stable sets may not exist, may be not unique, not convex...

イロン イヨン イヨン -

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \le v(S)$
- x dominates y (x dom y) if x dom_S y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies
 - external stability: $\forall y \notin U, \exists x \in U \text{ such that } x \operatorname{dom} y$;
 - internal stability: $x \operatorname{dom} y \And y \in U \implies x \notin U$.
- Stable sets may not exist, may be not unique, not convex...
- If the core is stable, then it is the unique stable set of the game.

イロン イヨン イヨン -

- Let $X(v) = \{x \in \mathbb{R}^N : x(N) = v(N)\}$ and $I(v) = \{x \in X(v) : x_i \ge v(\{i\}), \forall i \in N\}$ (*imputations*)
- Let $x, y \in X(v)$ and $S \in 2^N \setminus \{\emptyset, N\}$. Then x dominates y via S $(x \operatorname{dom}_S y)$ if:
 - $x_i > y_i, \forall i \in S$
 - $x(S) \leq v(S)$
- x dominates y (x dom y) if x dom_S y for some S
- (Von Neumann and Morgenstern, 1944) U ⊆ I(v) is a stable set if it satisfies
 - external stability: $\forall y \notin U, \exists x \in U$ such that $x \operatorname{dom} y$;
 - internal stability: $x \operatorname{dom} y \And y \in U \implies x \notin U$.
- Stable sets may not exist, may be not unique, not convex...
- If the core is stable, then it is the unique stable set of the game.
- G. and Sudhölter (2021) found a (finite!) (but very combinatorial!!) necessary and sufficient condition for core stability using nested minimal balanced collections.

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

白 と く ヨ と く ヨ と …

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

• 2 quantifiers on 2 variables in uncountable sets + linear inequalities

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

 $\exists x \in X(v), x(S) \geqslant v(S) \forall S$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

▶ ★ 国 ▶ ★ 国 ▶

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

 $\exists x \in X(v), x(S) \ge v(S) \forall S$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

 Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).

回 と く ヨ と く ヨ と …

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

 $\exists x \in X(v), x(S) \ge v(S) \forall S$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).
- Taking a similar approach, we replace each test on a continuous variable by a finite balancedness condition

(本部)) (本語)) (本語)) (語)

• Assuming $C(v) \neq \emptyset$, the core is stable iff

 $\forall y \in X(v) \setminus C(v), \exists x(y) =: x \in C(v), \exists S \in 2^N, x_S \gg y_S, x(S) = v(S)$

- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

 $\exists x \in X(v), x(S) \ge v(S) \forall S$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).
- Taking a similar approach, we replace each test on a continuous variable by a finite balancedness condition
- \Rightarrow nested balancedness condition

(本部)) (本語)) (本語)) (語)

Let $Z \subseteq \mathbb{R}^N_+ \setminus \{0\}$ be a finite set. $Z' \subseteq Z$ is a *balanced set* if there exists a nonnegative *balancing vector* $(\delta_z)_{z \in Z'}$ such that $\sum_{z \in Z'} \delta_z z = 1^N$.

Let $Z \subseteq \mathbb{R}^N_+ \setminus \{0\}$ be a finite set. $Z' \subseteq Z$ is a *balanced set* if there exists a nonnegative *balancing vector* $(\delta_z)_{z \in Z'}$ such that $\sum_{z \in Z'} \delta_z z = 1^N$.

• We say that a balanced subset is *minimal* if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most *n* vectors.

Let $Z \subseteq \mathbb{R}^N_+ \setminus \{0\}$ be a finite set. $Z' \subseteq Z$ is a *balanced set* if there exists a nonnegative *balancing vector* $(\delta_z)_{z \in Z'}$ such that $\sum_{z \in Z'} \delta_z z = 1^N$.

- We say that a balanced subset is *minimal* if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most *n* vectors.
- Let $Z = \{z^1, \ldots, z^q\} \subseteq \mathbb{R}^N_+$ with $q \leq n$. Consider the matrix A^Z made by the column vectors z^1, \ldots, z^q . Then Z is a minimal balanced set if the following linear system in $\delta \in \mathbb{R}^q$

$$A^Z \delta = \mathbf{1}^N$$

has a unique solution which is positive.

Let $Z \subseteq \mathbb{R}^N_+ \setminus \{0\}$ be a finite set. $Z' \subseteq Z$ is a *balanced set* if there exists a nonnegative *balancing vector* $(\delta_z)_{z \in Z'}$ such that $\sum_{z \in Z'} \delta_z z = 1^N$.

- We say that a balanced subset is *minimal* if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most *n* vectors.
- Let $Z = \{z^1, \ldots, z^q\} \subseteq \mathbb{R}^N_+$ with $q \leq n$. Consider the matrix A^Z made by the column vectors z^1, \ldots, z^q . Then Z is a minimal balanced set if the following linear system in $\delta \in \mathbb{R}^q$

$$A^Z \delta = \mathbf{1}^N$$

has a unique solution which is positive.

• No specific algorithm for generating them so far...

Theorem (G. and Sudhölter, 2021)

Let (N, v) be a balanced game. Then v has a stable core if and only if for every feasible collection S and every $(\mathcal{B}_S)_{S \in S} \in \mathbb{C}(S)$, either

$$\exists Z' \in \mathbb{B}(\mathbb{S}, (\mathfrak{B}_{\mathcal{S}})_{\mathcal{S} \in \mathbb{S}}) \setminus \mathbb{B}_{0}(\mathbb{S}, (\mathfrak{B}_{\mathcal{S}})_{\mathcal{S} \in \mathbb{S}}) : \sum_{z \in Z'} \delta_{z}^{Z'} a_{z} > v(N) \text{ holds or}$$

$$\exists Z' \in \mathbb{B}_0(\mathbb{S}, (\mathfrak{B}_S)_{S \in \mathbb{S}}) : \sum_{z \in Z'} \delta_z^{Z'} a_z \ge v(N) \text{ holds.}$$

Outline

- 1. TU-games and the like
- 2. Balanced collections
- 3. Applications
- 4. Geometry of the set of balanced games

• The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

白 と く ヨ と く ヨ と …

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

 \rightarrow We focus on $\mathcal{BG}_+(n)$ and $\mathcal{BG}(n)$.

白 と く ヨ と く ヨ と …

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set $\mathcal{BG}_M(n)$ of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

→ We focus on $\mathcal{BG}_+(n)$ and $\mathcal{BG}(n)$. Notation: $\mathfrak{B}^*(n)$: set of m.b.c. on N, except $\{N\}$.

回 と く ヨ と く ヨ と …

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

米部 米油 米油 米油 とう

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathfrak{BG}_+(n)$ is a convex polytope. What are its vertices?

聞 と く ヨ と く ヨ と …

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathfrak{BG}_+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{BG}_+(n)$ if and only if v is balanced and 0-1-valued.

御 と く ヨ と く ヨ と … ヨ

Structure of $\mathcal{B}\mathcal{G}_+(n)$

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathfrak{BG}_+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{BG}_+(n)$ if and only if v is balanced and 0-1-valued.

Theorem

$$v \in \mathfrak{BG}_+(n)$$
 is a vertex iff either $v = 0$ or it has the following form:
 $v(S) = \begin{cases} 1, & \text{if } S \in \mathfrak{D} \\ 0, & \text{otherwise,} \end{cases}$
where $\mathfrak{D} \subseteq 2^N$ such that $\bigcap \mathfrak{D} \neq \emptyset$.

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

イロン イ部 とくほど くほとう ほ

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Theorem

The number of vertices v_n of $\mathcal{BG}_+(n)$ is given by $v_n = f_n + 1$ where f_n is defined recursively as follows:

$$f_n = \sum_{k=1}^{n-1} {n \choose k} \left(2^{2^k - 1} - f_k - 1 \right), \forall n > 1 \text{ and } f_1 = 0$$

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Theorem

The number of vertices v_n of $\mathcal{BG}_+(n)$ is given by $v_n = f_n + 1$ where f_n is defined recursively as follows:

$$f_n = \sum_{k=1}^{n-1} {n \choose k} \left(2^{2^k - 1} - f_k - 1 \right), \forall n > 1 \text{ and } f_1 = 0$$

n	1	2	3	4	5	6	7	8
vn	1	3	19	471	162631	1288441281	9 $6.456e + 19$	1.361e + 39
							▲□ > ▲圖 > ▲目 >	▲目▶ 目 わめの
26/34	M. Grabisch ©2023 Balanced Games							

• $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leq 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$

御 と く ヨ と く ヨ と …

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leqslant 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leqslant 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum \lambda_S v(S) - v(N) \leq 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define

S∈B

• the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise

• $\mathfrak{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_S v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^*(n)$$

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

• $\mathcal{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_S v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^*(n)$$

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

Theorem

Let $n \ge 2$. Then $\mathfrak{BG}(n)$ is $(2^n - 1)$ -dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathfrak{BG}(n))$ has dimension n, with basis $(w_i)_{i \in N}, w_i = u_{\{i\}}$, the unanimity game centered on $\{i\}$

ヘロン 人間 とくほど くほとう

• $\mathcal{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_S v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^*(n)$$

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

Theorem

Let $n \ge 2$. Then $\mathfrak{BG}(n)$ is $(2^n - 1)$ -dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathfrak{BG}(n))$ has dimension n, with basis $(w_i)_{i \in N}, w_i = u_{\{i\}}$, the unanimity game centered on $\{i\}$

As $\mathcal{BG}(n)$ is not pointed, it can be decomposed as follows:

$$\mathbb{BG}(n) = \mathrm{Lin}(\mathbb{BG}(n)) \oplus \mathbb{BG}^{0}(n)$$

Theorem

Let $n \ge 2$. The extremal rays of $\mathfrak{BG}(n)$ are

- The 2n extremal rays corresponding to Lin(BG(n)): w₁,..., w_n, -w₁,..., -w_n;
- $2^n n 2$ extremal rays of the form $r_S = -\delta_S$, $S \subset N$, |S| > 1;
- n extremal rays of the form

$$r_i = \sum_{S \ni i, |S| > 1} \delta_S, \quad i \in N.$$

This yields in total $2^n + 2n - 2$ extremal rays.

Theorem

Let $n \ge 2$. The extremal rays of $\mathfrak{BG}(n)$ are

- The 2n extremal rays corresponding to Lin(BG(n)): w₁,..., w_n, -w₁,..., -w_n;
- $2^n n 2$ extremal rays of the form $r_S = -\delta_S$, $S \subset N$, |S| > 1;
- n extremal rays of the form

$$r_i = \sum_{S \ni i, |S| > 1} \delta_S, \quad i \in N.$$

This yields in total $2^n + 2n - 2$ extremal rays.

Lemma

The cores of w_i , $-w_i$, r_i , r_s for all $i \in N$, $S \subset N$, |S| > 1 are singletons (respectively, $\{1^{\{i\}}\}, \{-1^{\{i\}}\}, \{1^{\{i\}}\}, \{0\}$).

 $Lin(\mathfrak{BG}(n))$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ -

æ

• In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.

- In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.
- However, in the case of BG₊(n), not all vertices have a point core: a vertex v has a point core iff its support D is s.t. |∩D| = 1.

When is the core reduced to a point?

General result: a game in the interior of $\mathcal{BG}_+(n)$ (or $\mathcal{BG}(n)$) does not have a point core.

When is the core reduced to a point?

General result: a game in the interior of $\mathcal{BG}_+(n)$ (or $\mathcal{BG}(n)$) does not have a point core.

Case of $\mathcal{B}\mathcal{G}_+(n)$:

Lemma

Suppose v, v' are adjacent vertices of $\mathcal{BG}_+(n)$. Then a game on the edge defined by v, v' has a point core iff v, v' have a point core.

When is the core reduced to a point?

General result: a game in the interior of $\mathcal{BG}_+(n)$ (or $\mathcal{BG}(n)$) does not have a point core.

Case of $\mathcal{B}\mathcal{G}_+(n)$:

Lemma

Suppose v, v' are adjacent vertices of $\mathcal{BG}_+(n)$. Then a game on the edge defined by v, v' has a point core iff v, v' have a point core.

More generally:

Lemma

Consider v in the relative interior of a p-dim face of $BG_+(n)$. Then v has a point core iff all vertices defining the face have a point core.

・ロト ・回ト ・ヨト ・ヨト

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

We recall that facets of $\mathcal{BG}(n)$ are in bijection with the elements of $\mathfrak{B}^*(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^*(n)$ and its corresponding facet in $\mathfrak{BG}(n)$.

- If $|\mathcal{B}| = n$, every game in the facet has a point core.
- Otherwise, no game in the relative interior of the facet has a point core.

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

We recall that facets of $\mathcal{BG}(n)$ are in bijection with the elements of $\mathfrak{B}^*(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^*(n)$ and its corresponding facet in $\mathfrak{BG}(n)$.

- **1** If $|\mathcal{B}| = n$, every game in the facet has a point core.
- Otherwise, no game in the relative interior of the facet has a point core.

Theorem

Consider a face \mathcal{F} of $\mathcal{BG}(n)$, being the interection of facets $\mathcal{F}_1, \ldots, \mathcal{F}_p$ with associated m.b.c. $\mathcal{B}_1, \ldots, \mathcal{B}_p$. Then any game in \mathcal{F} has a point core iff the rank of the matrix $\{1^S, S \in \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p\}$ is n.

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

3

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_1	<i>r</i> ₂	<i>r</i> ₃
$\mathcal{B}_1 = \{1, 2, 3\}$	×	×	×			
$\mathcal{B}_2 = \{1, 23\}$	×	×			×	×
$\mathcal{B}_3 = \{2, 13\}$	×		×	×		×
$\mathcal{B}_4 = \{3, 12\}$		×	×	×	\times	
$\mathcal{B}_5 = \{12, 13, 23\}$				\times	\times	\times

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

3

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_1	<i>r</i> ₂	<i>r</i> ₃
$\mathcal{B}_1 = \{1, 2, 3\}$	×	×	×			
$\mathcal{B}_2 = \{1, 23\}$	×	×			×	×
$\mathcal{B}_3 = \{2, 13\}$	×		×	×		×
$\mathcal{B}_4 = \{3, 12\}$		×	×	×	\times	
$\mathcal{B}_5 = \{12, 13, 23\}$				\times	\times	\times

個 と く ヨ と く ヨ と …

That's all for the moment...

Thank you for your attention !

- ∢ ⊒ ▶