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Centre d’Economie de la Sorbonne

Paris School of Economics, Paris, France

1/34 M. Grabisch c©2023 Balanced Games



Introduction
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Introduction

Cooperative games with transferable utility (TU-games) are merely
set functions on a finite set vanishing on the empty set.

This wide definition makes them appear in various fields of discrete
mathematics: combinatorial optimization and operations research,
game theory, decision theory, imprecise probabilities, etc.

A central notion related to TU-games is the core: it has its
counterpart in all of the above mentioned fields.

Games with a nonempty core are the balanced games, where the key
notion behind is the notion of balanced collection of sets.

This talk is about balanced collections and balanced games, whose
structure remains largely unexplored.
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TU-games
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x ∈ R
N is a payoff vector. Notation: for every S ⊆ N,

x(S) =
∑
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xi

Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x , called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).
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N = {1, . . . , n} set of players. Subsets of N are called coalitions.

A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2N → R s.t.
v(∅) = 0.

x ∈ R
N is a payoff vector. Notation: for every S ⊆ N,

x(S) =
∑

i∈S

xi

Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x , called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).

One of the best known solution: the core (Gillies, 1953)

C (v) = {x ∈ R
N : x(S) ≥ v(S)∀S , x(N) = v(N)}

(coalitional rationality, or stability of the grand coalition N)
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TU-games in other domains

In decision theory, one considers capacities, which are monotone
games: v is a capacity if S ⊆ T implies v(S) 6 v(T ) and v(N) = 1.
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In decision theory, one considers capacities, which are monotone
games: v is a capacity if S ⊆ T implies v(S) 6 v(T ) and v(N) = 1.

The lower envelope of a convex set of probability measures is a
capacity (imprecise probabilities (Walley, 1991)).

Probability measures are additive capacities:
v(A ∪ B) = v(A) + v(B) for disjoint A,B

The core of a capacity v is:

C (v) = {x ∈ R
N : x(S) ≥ v(S)∀S , x(N) = 1}

i.e., x ∈ C (v) can be interpreted as a probability measure
dominating (compatible with) v .

In combinatorial optimization, when v is submodular, it can be seen
as the rank function of a matroid. Then the (anti-)core of v is the
base polyhedron of v (Edmonds, 1970).
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Balanced collections

(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
balanced if there exist positive numbers λS for all S ∈ B s.t.

∑

S∈B

λS1
S = 1N

(i.e., for every i ∈ N,
∑

S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).
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Balanced collections

(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
balanced if there exist positive numbers λS for all S ∈ B s.t.

∑

S∈B

λS1
S = 1N

(i.e., for every i ∈ N,
∑

S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).

(λS )S∈B are the balancing weights.
Examples:

Every partition (balancing weights: 1)
n = 3:

{

12, 13, 23
}

with λ =
(

1

2
, 1

2
, 1

2

)
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S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).

(λS )S∈B are the balancing weights.
Examples:

Every partition (balancing weights: 1)
n = 3:

{

12, 13, 23
}

with λ =
(

1

2
, 1

2
, 1

2

)

n = 4:
{

12, 13, 14, 234
}

with λ =
(

1

3
, 1

3
, 1

3
, 2
3

)

.
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A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
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(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
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}

with λ =
(

1

2
, 1

2
, 1

2

)

n = 4:
{

12, 13, 14, 234
}

with λ =
(

1

3
, 1

3
, 1

3
, 2
3

)

.

A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).

So far, the number of minimal balanced collections (m.b.c.) is
unknown beyond n = 4. A recursive algorithm has been proposed by
Peleg (1965).
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What about unbalanced collections?

A collection of subsets of N which does not contain a balanced
collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).
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What about unbalanced collections?

A collection of subsets of N which does not contain a balanced
collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).

Equivalently, 1N is not in the cone generated by the 1S , S ∈ B.

unbalanced → not balanced, but not the converse!

What is known so far:

n Nb of maximal unbalanced collections

2 2
3 6
4 32
5 370
6 11,292
7 1,066,044
8 347,326,352
9 419,172,756,930
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Unbalanced collections and hyperplanes arrangements

By Farkas Lemma, it can be shown that a collection S of nonempty
sets is unbalanced if and only if there exists y ∈ R

N such that
∑

i∈N yi = 0 and
∑

i∈S yi > 0 for all S ∈ S.
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By Farkas Lemma, it can be shown that a collection S of nonempty
sets is unbalanced if and only if there exists y ∈ R

N such that
∑

i∈N yi = 0 and
∑

i∈S yi > 0 for all S ∈ S.

Examples:

(i) For n = 3: {{1, 2}, {1, 3}, {1}}, y = (2,−1,−1);
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Unbalanced collections and hyperplanes arrangements

By Farkas Lemma, it can be shown that a collection S of nonempty
sets is unbalanced if and only if there exists y ∈ R

N such that
∑

i∈N yi = 0 and
∑

i∈S yi > 0 for all S ∈ S.

Examples:

(i) For n = 3: {{1, 2}, {1, 3}, {1}}, y = (2,−1,−1);
(ii) For n = 4: {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

y = (3,−1,−1,−1).
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Unbalanced collections and hyperplanes arrangements

By Farkas Lemma, it can be shown that a collection S of nonempty
sets is unbalanced if and only if there exists y ∈ R

N such that
∑

i∈N yi = 0 and
∑

i∈S yi > 0 for all S ∈ S.

Examples:

(i) For n = 3: {{1, 2}, {1, 3}, {1}}, y = (2,−1,−1);
(ii) For n = 4: {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

y = (3,−1,−1,−1).

In the hyperplane HN = {x ∈ R
N | x(N) = 0}, consider the

hyperplanes {x ∈ HN | x(S) = 0}, for all S ∈ 2N \ {∅,N} (only
2n−1 − 1 distinct ones). There is a bijection between maximal
unbalanced collections and regions induced by the hyperplane
arrangement, which shows that maximal u.c. have 2n−1 − 1 sets.
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x1 x2

x3

x2 = 0
x1 + x3 = 0

x1 = 0
x2 + x3 = 0

x3 = 0
x1 + x2 = 0

{1, 2, 12}

{2, 12, 23}

{2, 3, 23}

{3, 13, 23}

{1, 3, 13}

{1, 12, 13}

Figure: The restricted all-subset arrangement for n = 3 in the plane HN . Arrows
indicate the normal vector to the hyperplane of the same color. The 6 maximal
unbalanced collections (subsets are written without comma and braces)
correspond to the 6 regions.
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Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg
algorithm in Python, and found the following:

Players Minimal balanced collections CPU time

1 1 -

2 2 ∼ 0.00 sec

3 6 ∼ 0.01 sec

4 42 ∼ 0.03 sec

5 1 292 ∼ 1.05 sec

6 200 214 ∼ 4 min 4 sec

7 132 422 036 ∼ 63 hours
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Players Minimal balanced collections CPU time

1 1 -

2 2 ∼ 0.00 sec

3 6 ∼ 0.01 sec

4 42 ∼ 0.03 sec

5 1 292 ∼ 1.05 sec

6 200 214 ∼ 4 min 4 sec

7 132 422 036 ∼ 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of
Integer Sequences (Sloane, 1964)) under the number A355042 (see
https://oeis.org/A355042).
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Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg
algorithm in Python, and found the following:

Players Minimal balanced collections CPU time

1 1 -

2 2 ∼ 0.00 sec

3 6 ∼ 0.01 sec

4 42 ∼ 0.03 sec

5 1 292 ∼ 1.05 sec

6 200 214 ∼ 4 min 4 sec

7 132 422 036 ∼ 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of
Integer Sequences (Sloane, 1964)) under the number A355042 (see
https://oeis.org/A355042).
N.B. 2: We have stored the complete list of m.b.c. till n = 7
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A comparison with a polyhedral approach

Consider the polytope W (N) defined by

W (N) =







λ ∈ R
2N\{∅} :

∑

S∈2N\{∅}

λS1
S = 1N , λS ≥ 0,∀S ∈ 2N \ {∅}
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A comparison with a polyhedral approach

Consider the polytope W (N) defined by

W (N) =







λ ∈ R
2N\{∅} :

∑

S∈2N\{∅}

λS1
S = 1N , λS ≥ 0,∀S ∈ 2N \ {∅}







It is easy to check that the vertices of W (N) are in bijection with
the minimal balanced collections on N, taking B := {S : λS > 0}.

Consequently, generating all minimal balanced collections of N
amounts to finding all vertices of W (N).

This vertex enumeration problem can be solved by the Avis-Fukuda
method (1992). Here are the CPU times when n = 6:

Peleg’s algorithm Avis-Fukuda algorithm

4mn 4s 29mn 24s

(pycddlib package used for Avis-Fukuda algorithm)
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (λB

S )S∈B, we have

∑

S∈B

λB
S v(S) ≤ v(N).

Moreover, none of the inequalities is redundant, except the one for
B = {N}.

Note: Games satisfying this condition are called balanced
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (λB

S )S∈B, we have

∑

S∈B

λB
S v(S) ≤ v(N).

Moreover, none of the inequalities is redundant, except the one for
B = {N}.

Note: Games satisfying this condition are called balanced
Equivalently, one can solve the following LP and check if the value of the
LP is equal to v(N):

min x(N)

s.t. x(S) ≥ v(S),∀S ∈ 2N \ {∅}
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Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python),
run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley LP

0.96s 24.85s

(Laplace Mermoud, G. and Sudhölter, 2023)
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Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python),
run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley LP

0.96s 24.85s

(Laplace Mermoud, G. and Sudhölter, 2023)
Important note: m.b.c. do not depend on the game, only on N. Hence
they are generated only once for ever.
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Effectiveness, exactness

A coalition S is exact if x(S) = v(S) for some x ∈ C (v).
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vS(T ) =
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v(T ), otherwise.
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{
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Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, vS ) is
balanced.
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A coalition S is exact if x(S) = v(S) for some x ∈ C (v).
A coalition S is effective if x(S) = v(S) for all x ∈ C (v). We
denote by E(v) the set of effective coalitions.
For any coalition S we define the game (N, vS ) by

vS(T ) =

{

v(N) − v(S), if T = N \ S

v(T ), otherwise.

Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, vS ) is
balanced.

Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

E(v) is the union of all the minimal balanced collections B such that

∑

S∈B

λB
S v(S) = v(N).
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Let x , y ∈ X (v) and S ∈ 2N \ {∅,N}. Then x dominates y via S
(x domS y) if:

xi > yi , ∀i ∈ S
x(S) ≤ v(S)

x dominates y (x dom y) if x domS y for some S

(Von Neumann and Morgenstern, 1944) U ⊆ I (v) is a stable set if it
satisfies

external stability: ∀y 6∈ U , ∃x ∈ U such that x dom y ;
internal stability: x dom y & y ∈ U =⇒ x 6∈ U .

Stable sets may not exist, may be not unique, not convex...

If the core is stable, then it is the unique stable set of the game.

G. and Sudhölter (2021) found a (finite!) (but very combinatorial!!)
necessary and sufficient condition for core stability using nested
minimal balanced collections.
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Why a nested balancedness condition?

Assuming C (v) 6= ∅, the core is stable iff

∀y ∈ X (v) \ C (v),∃x(y) =: x ∈ C (v),∃S ∈ 2N , xS ≫ yS , x(S) = v(S)
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2 quantifiers on 2 variables in uncountable sets + linear inequalities

Recall: test of nonemptiness of the core:
∃x ∈ X (v), x(S) > v(S)∀S

(1 quantifier on 1 variable in an uncountable set + linear
inequalities)

Bondareva-Shapley permits to reduce to a finite number of tests
(=number of minimal balanced collections).

Taking a similar approach, we replace each test on a continuous
variable by a finite balancedness condition

⇒ nested balancedness condition
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Balanced sets

Definition

Let Z ⊆ R
N
+ \ {0} be a finite set. Z ′ ⊆ Z is a balanced set if there exists

a nonnegative balancing vector (δz)z∈Z ′ such that
∑

z∈Z ′ δzz = 1N .
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Let Z = {z1, . . . , zq} ⊆ R
N
+ with q 6 n. Consider the matrix AZ

made by the column vectors z1, . . . , zq. Then Z is a minimal
balanced set if the following linear system in δ ∈ R
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AZδ = 1N

has a unique solution which is positive.
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Balanced sets

Definition

Let Z ⊆ R
N
+ \ {0} be a finite set. Z ′ ⊆ Z is a balanced set if there exists

a nonnegative balancing vector (δz)z∈Z ′ such that
∑

z∈Z ′ δzz = 1N .

We say that a balanced subset is minimal if it does not contain a
proper subset that is balanced (equivalently, if there is a unique
balancing vector). Minimal balanced sets have at most n vectors.

Let Z = {z1, . . . , zq} ⊆ R
N
+ with q 6 n. Consider the matrix AZ

made by the column vectors z1, . . . , zq. Then Z is a minimal
balanced set if the following linear system in δ ∈ R

q

AZδ = 1N

has a unique solution which is positive.

No specific algorithm for generating them so far...
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Core stability: main result

Theorem (G. and Sudhölter, 2021)

Let (N, v) be a balanced game. Then v has a stable core if and only if
for every feasible collection S and every (BS )S∈S ∈ C(S), either

∃Z ′ ∈ B(S, (BS )S∈S) \ B0(S, (BS )S∈S) :
∑

z∈Z ′

δZ
′

z az > v(N) holds or

∃Z ′ ∈ B0(S, (BS )S∈S) :
∑

z∈Z ′

δZ
′

z az ≥ v(N) holds.
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Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:

1 The set BG(n) of balanced games on N = {1, . . . , n}

2 The set BGα(n) of balanced games v on N such that v(N) = α

3 The set BG+(n) of balanced games v on N such that v > 0 (and
v(N) = 1 arbitrarily fixed)

4 The set BGM(n) of balanced games which are monotone and
v(N) = 1, i.e., capacities

The set BGM(n) seems extremely difficult to study. Its structure is not
elucidated.
→ We focus on BG+(n) and BG(n).
Notation: B∗(n): set of m.b.c. on N, except {N}.
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Structure of BG+(n)

BG+(n) is determined by the following system of inequalities
∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}
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Structure of BG+(n)

BG+(n) is determined by the following system of inequalities
∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}

→֒ BG+(n) is a convex polytope. What are its vertices?

Theorem

v is a vertex of BG+(n) if and only if v is balanced and 0-1-valued.

Theorem

v ∈ BG+(n) is a vertex iff either v = 0 or it has the following form:

v(S) =

{

1, if S ∈ D

0, otherwise,

where D ⊆ 2N such that
⋂

D 6= ∅.
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1
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Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.
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D| − 1

Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.

Theorem

The number of vertices vn of BG+(n) is given by vn = fn + 1 where fn is
defined recursively as follows:

fn =

n−1
∑

k=1

(

n

k

)

(

22
k−1 − fk − 1

)

,∀n > 1 and f1 = 0
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1

Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.

Theorem

The number of vertices vn of BG+(n) is given by vn = fn + 1 where fn is
defined recursively as follows:

fn =

n−1
∑

k=1

(

n

k

)

(

22
k−1 − fk − 1

)

,∀n > 1 and f1 = 0

n 1 2 3 4 5 6 7 8

vn 1 3 19 471 162631 12884412819 6.456e + 19 1.361e + 39
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)
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Theorem

Let n > 2. Then BG(n) is (2n − 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wi )i∈N , wi = u{i}, the unanimity game centered on {i}
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BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define

the unanimity game uS by uS(T ) = 1 iff T ⊇ S and 0 otherwise
the Dirac game δS by δS (T ) = 1 iff T = S and 0 otherwise

Theorem

Let n > 2. Then BG(n) is (2n − 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wi )i∈N , wi = u{i}, the unanimity game centered on {i}

As BG(n) is not pointed, it can be decomposed as follows:

BG(n) = Lin(BG(n))⊕BG0(n)

where BG0(n) is a supplementary space (not unique), chosen so that the
coordinates corresponding to singletons are zero.
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Structure of BG(n)

Theorem

Let n > 2. The extremal rays of BG(n) are

The 2n extremal rays corresponding to Lin(BG(n)):
w1, . . . ,wn,−w1, . . . ,−wn;

2n − n − 2 extremal rays of the form rS = −δS , S ⊂ N, |S | > 1;

n extremal rays of the form

ri =
∑

S∋i ,|S|>1

δS , i ∈ N.

This yields in total 2n + 2n − 2 extremal rays.
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Structure of BG(n)

Theorem

Let n > 2. The extremal rays of BG(n) are

The 2n extremal rays corresponding to Lin(BG(n)):
w1, . . . ,wn,−w1, . . . ,−wn;

2n − n − 2 extremal rays of the form rS = −δS , S ⊂ N, |S | > 1;

n extremal rays of the form

ri =
∑

S∋i ,|S|>1

δS , i ∈ N.

This yields in total 2n + 2n − 2 extremal rays.

Lemma

The cores of wi , −wi , ri , rS for all i ∈ N, S ⊂ N, |S | > 1 are singletons
(respectively, {1{i}}, {−1{i}}, {1{i}}, {0}).
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Structure of BG(n)

0

Lin(BG(n))

BG0(n)
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When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.
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When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.

However, in the case of BG+(n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |

⋂

D| = 1.
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When is the core reduced to a point?

General result: a game in the interior of BG+(n) (or BG(n)) does not
have a point core.
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When is the core reduced to a point?

General result: a game in the interior of BG+(n) (or BG(n)) does not
have a point core.

Case of BG+(n):

Lemma

Suppose v , v ′ are adjacent vertices of BG+(n). Then a game on the edge
defined by v , v ′ has a point core iff v , v ′ have a point core.
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When is the core reduced to a point?

General result: a game in the interior of BG+(n) (or BG(n)) does not
have a point core.

Case of BG+(n):

Lemma

Suppose v , v ′ are adjacent vertices of BG+(n). Then a game on the edge
defined by v , v ′ has a point core iff v , v ′ have a point core.

More generally:

Lemma

Consider v in the relative interior of a p-dim face of BG+(n). Then v has
a point core iff all vertices defining the face have a point core.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B

∗(n), i.e., minimal balanced collections.

Theorem

Consider a m.b.c. B ∈ B
∗(n) and its corresponding facet in BG(n).

1 If |B| = n, every game in the facet has a point core.

2 Otherwise, no game in the relative interior of the facet has a point
core.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B

∗(n), i.e., minimal balanced collections.

Theorem

Consider a m.b.c. B ∈ B
∗(n) and its corresponding facet in BG(n).

1 If |B| = n, every game in the facet has a point core.

2 Otherwise, no game in the relative interior of the facet has a point
core.

Theorem

Consider a face F of BG(n), being the interection of facets F1, . . . ,Fp

with associated m.b.c. B1, . . . ,Bp . Then any game in F has a point core
iff the rank of the matrix {1S ,S ∈ B1 ∪ · · · ∪Bp} is n.
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The case n = 3

The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.
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The case n = 3

The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.

m.b.c. −δ12 −δ13 −δ23 r1 r2 r3
B1 = {1, 2, 3} × × ×
B2 = {1, 23} × × × ×
B3 = {2, 13} × × × ×
B4 = {3, 12} × × × ×

B5 = {12, 13, 23} × × ×
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The case n = 3

The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.

m.b.c. −δ12 −δ13 −δ23 r1 r2 r3
B1 = {1, 2, 3} × × ×
B2 = {1, 23} × × × ×
B3 = {2, 13} × × × ×
B4 = {3, 12} × × × ×

B5 = {12, 13, 23} × × ×

{1, 2, 3}

{12, 13, 23}

{1, 23}{2, 13} {3, 12}
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That’s all for the moment...

Thank you for your attention !
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