## Balanced Games

## Michel GRABISCH

Université Paris I Panthéon-Sorbonne Centre d'Economie de la Sorbonne

Paris School of Economics, Paris, France

## Introduction

- Cooperative games with transferable utility (TU-games) are merely set functions on a finite set vanishing on the empty set.


## Introduction

- Cooperative games with transferable utility (TU-games) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.


## Introduction

- Cooperative games with transferable utility (TU-games) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the core: it has its counterpart in all of the above mentioned fields.


## Introduction

- Cooperative games with transferable utility (TU-games) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the core: it has its counterpart in all of the above mentioned fields.
- Games with a nonempty core are the balanced games, where the key notion behind is the notion of balanced collection of sets.


## Introduction

- Cooperative games with transferable utility (TU-games) are merely set functions on a finite set vanishing on the empty set.
- This wide definition makes them appear in various fields of discrete mathematics: combinatorial optimization and operations research, game theory, decision theory, imprecise probabilities, etc.
- A central notion related to TU-games is the core: it has its counterpart in all of the above mentioned fields.
- Games with a nonempty core are the balanced games, where the key notion behind is the notion of balanced collection of sets.
- This talk is about balanced collections and balanced games, whose structure remains largely unexplored.


# Outline <br> 1. TU-games and the like <br> 2. Balanced collections <br> 3. Applications <br> 4. Geometry of the set of balanced games 

## TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of $N$ are called coalitions.


## TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of $N$ are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by $T U$-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t. $v(\varnothing)=0$.


## TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of $N$ are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by $T$ U-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t. $v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

## TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of $N$ are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by $T U$-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t.
$v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) $x$, called the solution of the game. Usually, one impose $x(N)=v(N)$ (efficiency: share the whole cake).


## TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of $N$ are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by TU-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t.
$v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) $x$, called the solution of the game. Usually, one impose $x(N)=v(N)$ (efficiency: share the whole cake).
- One of the best known solution: the core (Gillies, 1953)

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=v(N)\right\}
$$

(coalitional rationality, or stability of the grand coalition $N$ )

## TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: $v$ is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.


## TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: $v$ is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- The lower envelope of a convex set of probability measures is a capacity (imprecise probabilities (Walley, 1991)).


## TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: $v$ is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- The lower envelope of a convex set of probability measures is a capacity (imprecise probabilities (Walley, 1991)).
- Probability measures are additive capacities:
$v(A \cup B)=v(A)+v(B)$ for disjoint $A, B$


## TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: $v$ is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- The lower envelope of a convex set of probability measures is a capacity (imprecise probabilities (Walley, 1991)).
- Probability measures are additive capacities:
$v(A \cup B)=v(A)+v(B)$ for disjoint $A, B$
- The core of a capacity $v$ is:

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=1\right\}
$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) $v$.

## TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: $v$ is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- The lower envelope of a convex set of probability measures is a capacity (imprecise probabilities (Walley, 1991)).
- Probability measures are additive capacities:
$v(A \cup B)=v(A)+v(B)$ for disjoint $A, B$
- The core of a capacity $v$ is:

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=1\right\}
$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) $v$.

- In combinatorial optimization, when $v$ is submodular, it can be seen as the rank function of a matroid. Then the (anti-)core of $v$ is the base polyhedron of $v$ (Edmonds, 1970).


## Outline

1. TU-games and the like

## 2. Balanced collections

3. Applications
4. Geometry of the set of balanced games

## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $1^{S}, S \in \mathcal{B}$ ).

## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1 )
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1 )
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1 )
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- A balanced collection is minimal if no proper subcollection is balanced (equivalently, the balancing weights are unique).


## Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers $\lambda_{S}$ for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1 )
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- A balanced collection is minimal if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond $n=4$. A recursive algorithm has been proposed by Peleg (1965).


## What about balanced collections?

- A collection of subsets of $N$ which does not contain a balanced collection is said to be unbalanced. It is maximal if no supercollection of it is unbalanced (Billera et al., 2012).


## What about balanced collections?

- A collection of subsets of $N$ which does not contain a balanced collection is said to be unbalanced. It is maximal if no supercollection of it is unbalanced (Billera et al., 2012).
- Equivalently, $1^{N}$ is not in the cone generated by the $1^{S}, S \in \mathcal{B}$.


## What about balanced collections?

- A collection of subsets of $N$ which does not contain a balanced collection is said to be unbalanced. It is maximal if no supercollection of it is unbalanced (Billera et al., 2012).
- Equivalently, $1^{N}$ is not in the cone generated by the $1^{S}, S \in \mathcal{B}$.
- unbalanced $\rightarrow$ not balanced, but not the converse!


## What about balanced collections?

- A collection of subsets of $N$ which does not contain a balanced collection is said to be unbalanced. It is maximal if no supercollection of it is unbalanced (Billera et al., 2012).
- Equivalently, $1^{N}$ is not in the cone generated by the $1^{S}, S \in \mathcal{B}$.
- unbalanced $\rightarrow$ not balanced, but not the converse!
- What is known so far:

| $n$ | Nb of maximal unbalanced collections |
| ---: | ---: |
| 2 | 2 |
| 3 | 6 |
| 4 | 32 |
| 5 | 370 |
| 6 | 11,292 |
| 7 | $1,066,044$ |
| 8 | $347,326,352$ |
| 9 | $419,172,756,930$ |

## Unbalanced collections and hyperplanes arrangements

- By Farkas Lemma, it can be shown that a collection $\mathcal{S}$ of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^{N}$ such that $\sum_{i \in N} y_{i}=0$ and $\sum_{i \in S} y_{i}>0$ for all $S \in \mathcal{S}$.


## Unbalanced collections and hyperplanes arrangements

- By Farkas Lemma, it can be shown that a collection $\mathcal{S}$ of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^{N}$ such that $\sum_{i \in N} y_{i}=0$ and $\sum_{i \in S} y_{i}>0$ for all $S \in \mathcal{S}$.
- Examples:


## Unbalanced collections and hyperplanes arrangements

- By Farkas Lemma, it can be shown that a collection $\mathcal{S}$ of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^{N}$ such that $\sum_{i \in N} y_{i}=0$ and $\sum_{i \in S} y_{i}>0$ for all $S \in \mathcal{S}$.
- Examples:
(i) For $n=3$ : $\{\{1,2\},\{1,3\},\{1\}\}, y=(2,-1,-1)$;


## Unbalanced collections and hyperplanes arrangements

- By Farkas Lemma, it can be shown that a collection $\mathcal{S}$ of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^{N}$ such that $\sum_{i \in N} y_{i}=0$ and $\sum_{i \in S} y_{i}>0$ for all $S \in \mathcal{S}$.
- Examples:
(i) For $n=3$ : $\{\{1,2\},\{1,3\},\{1\}\}, y=(2,-1,-1)$;
(ii) For $n=4$ : $\{\{1\},\{1,2\},\{1,3\},\{1,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\}\}$, $y=(3,-1,-1,-1)$.


## Unbalanced collections and hyperplanes arrangements

- By Farkas Lemma, it can be shown that a collection $\mathcal{S}$ of nonempty sets is unbalanced if and only if there exists $y \in \mathbb{R}^{N}$ such that $\sum_{i \in N} y_{i}=0$ and $\sum_{i \in S} y_{i}>0$ for all $S \in \mathcal{S}$.
- Examples:
(i) For $n=3$ : $\{\{1,2\},\{1,3\},\{1\}\}, y=(2,-1,-1)$;
(ii) For $n=4$ : $\{\{1\},\{1,2\},\{1,3\},\{1,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\}\}$, $y=(3,-1,-1,-1)$.
- In the hyperplane $H_{N}=\left\{x \in \mathbb{R}^{N} \mid x(N)=0\right\}$, consider the hyperplanes $\left\{x \in H_{N} \mid x(S)=0\right\}$, for all $S \in 2^{N} \backslash\{\varnothing, N\}$ (only $2^{n-1}-1$ distinct ones). There is a bijection between maximal unbalanced collections and regions induced by the hyperplane arrangement, which shows that maximal u.c. have $2^{n-1}-1$ sets.


Figure: The restricted all-subset arrangement for $n=3$ in the plane $H_{N}$. Arrows indicate the normal vector to the hyperplane of the same color. The 6 maximal unbalanced collections (subsets are written without comma and braces) correspond to the 6 regions.

## Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

| Players | Minimal balanced collections | CPU time |
| :---: | :---: | :---: |
| 1 | 1 | - |
| 2 | 2 | $\sim 0.00 \mathrm{sec}$ |
| 3 | 6 | $\sim 0.01 \mathrm{sec}$ |
| 4 | 42 | $\sim 0.03 \mathrm{sec}$ |
| 5 | 1292 | $\sim 1.05 \mathrm{sec}$ |
| 6 | 200214 | $\sim 4 \min 4 \mathrm{sec}$ |
| 7 | 132422036 | $\sim 63 \mathrm{hours}$ |

## Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

| Players | Minimal balanced collections | CPU time |
| :---: | :---: | :---: |
| 1 | 1 | - |
| 2 | 2 | $\sim 0.00 \mathrm{sec}$ |
| 3 | 6 | $\sim 0.01 \mathrm{sec}$ |
| 4 | 42 | $\sim 0.03 \mathrm{sec}$ |
| 5 | 1292 | $\sim 1.05 \mathrm{sec}$ |
| 6 | 200214 | $\sim 4 \min 4 \mathrm{sec}$ |
| 7 | 132422036 | $\sim 63 \mathrm{hours}$ |

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of Integer Sequences (Sloane, 1964)) under the number A355042 (see https://oeis.org/A355042).

## Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhölter (2023) implemented the Peleg algorithm in Python, and found the following:

| Players | Minimal balanced collections | CPU time |
| :---: | :---: | :---: |
| 1 | 1 | - |
| 2 | 2 | $\sim 0.00 \mathrm{sec}$ |
| 3 | 6 | $\sim 0.01 \mathrm{sec}$ |
| 4 | 42 | $\sim 0.03 \mathrm{sec}$ |
| 5 | 1292 | $\sim 1.05 \mathrm{sec}$ |
| 6 | 200214 | $\sim 4 \min 4 \mathrm{sec}$ |
| 7 | 132422036 | $\sim 63 \mathrm{hours}$ |

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of Integer Sequences (Sloane, 1964)) under the number A355042 (see https://oeis.org/A355042).
N.B. 2: We have stored the complete list of m.b.c. till $n=7$

## A comparison with a polyhedral approach

- Consider the polytope $W(N)$ defined by

$$
W(N)=\left\{\lambda \in \mathbb{R}^{2^{N} \backslash\{\emptyset\}}: \sum_{S \in 2^{N} \backslash\{\emptyset\}} \lambda_{S} 1^{S}=1^{N}, \lambda_{S} \geq 0, \forall S \in 2^{N} \backslash\{\emptyset\}\right\}
$$

## A comparison with a polyhedral approach

- Consider the polytope $W(N)$ defined by

$$
W(N)=\left\{\lambda \in \mathbb{R}^{2^{N} \backslash\{\emptyset\}}: \sum_{S \in 2^{N} \backslash\{\emptyset\}} \lambda_{S} 1^{S}=1^{N}, \lambda_{S} \geq 0, \forall S \in 2^{N} \backslash\{\emptyset\}\right.
$$

- It is easy to check that the vertices of $W(N)$ are in bijection with the minimal balanced collections on $N$, taking $\mathcal{B}:=\left\{S: \lambda_{S}>0\right\}$.


## A comparison with a polyhedral approach

- Consider the polytope $W(N)$ defined by

$$
W(N)=\left\{\lambda \in \mathbb{R}^{2^{N} \backslash\{\emptyset\}}: \sum_{S \in 2^{N} \backslash\{\emptyset\}} \lambda_{S} 1^{S}=1^{N}, \lambda_{S} \geq 0, \forall S \in 2^{N} \backslash\{\emptyset\}\right.
$$

- It is easy to check that the vertices of $W(N)$ are in bijection with the minimal balanced collections on $N$, taking $\mathcal{B}:=\left\{S: \lambda_{S}>0\right\}$.
- Consequently, generating all minimal balanced collections of $N$ amounts to finding all vertices of $W(N)$.


## A comparison with a polyhedral approach

- Consider the polytope $W(N)$ defined by

$$
W(N)=\left\{\lambda \in \mathbb{R}^{2^{N} \backslash\{\emptyset\}}: \sum_{S \in 2^{N} \backslash\{\emptyset\}} \lambda_{S} 1^{S}=1^{N}, \lambda_{S} \geq 0, \forall S \in 2^{N} \backslash\{\emptyset\}\right\}
$$

- It is easy to check that the vertices of $W(N)$ are in bijection with the minimal balanced collections on $N$, taking $\mathcal{B}:=\left\{S: \lambda_{S}>0\right\}$.
- Consequently, generating all minimal balanced collections of $N$ amounts to finding all vertices of $W(N)$.
- This vertex enumeration problem can be solved by the Avis-Fukuda method (1992). Here are the CPU times when $n=6$ :

| Peleg's algorithm | Avis-Fukuda algorithm |
| :---: | :---: |
| 4 mn 4 s | 29 mn 24 s |

(pycddlib package used for Avis-Fukuda algorithm)

## Outline

## 1. TU-games and the like

## 2. Balanced collections

3. Applications
3.1. Nonemptiness of the core
3.2. Exactness, effectiveness
3.3. Core stability
4. Geometry of the set of balanced games

## Nonemptiness of the core

## Theorem (Bondareva-Shapley, sharp form)

A game $v$ has a nonempty core if and only if for any minimal balanced collection $\mathcal{B}$ with balancing vector $\left(\lambda_{S}^{\mathcal{B}}\right)_{S \in \mathcal{B}}$, we have

$$
\sum_{S \in \mathcal{B}} \lambda_{S}^{\mathcal{B}} v(S) \leq v(N)
$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B}=\{N\}$.

Note: Games satisfying this condition are called balanced

## Nonemptiness of the core

## Theorem (Bondareva-Shapley, sharp form)

A game $v$ has a nonempty core if and only if for any minimal balanced collection $\mathcal{B}$ with balancing vector $\left(\lambda_{S}^{\mathcal{B}}\right)_{S \in \mathcal{B}}$, we have

$$
\sum_{S \in \mathcal{B}} \lambda_{S}^{\mathcal{B}} v(S) \leq v(N)
$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B}=\{N\}$.

Note: Games satisfying this condition are called balanced Equivalently, one can solve the following LP and check if the value of the LP is equal to $v(N)$ :

$$
\begin{aligned}
\min & x(N) \\
\text { s.t. } & x(S) \geq v(S), \forall S \in 2^{N} \backslash\{\emptyset\}
\end{aligned}
$$

## Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python), run on 5000 randomly chosen balanced TU-games with $n=6$ :

| Bondareva-Shapley | LP |
| :---: | :---: |
| 0.96 s | 24.85 s |

(Laplace Mermoud, G. and Sudhölter, 2023)

## Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python), run on 5000 randomly chosen balanced TU-games with $n=6$ :

| Bondareva-Shapley | LP |
| :---: | :---: |
| 0.96 s | 24.85 s |

(Laplace Mermoud, G. and Sudhölter, 2023) Important note: m.b.c. do not depend on the game, only on $N$. Hence they are generated only once for ever.

## Outline

1. TU-games and the like
2. Balanced collections
3. Applications
3.1. Nonemptiness of the core
3.2. Exactness, effectiveness
3.3. Core stability
4. Geometry of the set of balanced games

## Effectiveness, exactness

- A coalition $S$ is exact if $x(S)=v(S)$ for some $x \in C(v)$.


## Effectiveness, exactness

- A coalition $S$ is exact if $x(S)=v(S)$ for some $x \in C(v)$.
- A coalition $S$ is effective if $x(S)=v(S)$ for all $x \in C(v)$. We denote by $\mathcal{E}(v)$ the set of effective coalitions.


## Effectiveness, exactness

- A coalition $S$ is exact if $x(S)=v(S)$ for some $x \in C(v)$.
- A coalition $S$ is effective if $x(S)=v(S)$ for all $x \in C(v)$. We denote by $\mathcal{E}(v)$ the set of effective coalitions.
- For any coalition $S$ we define the game $\left(N, v^{S}\right)$ by

$$
v^{S}(T)= \begin{cases}v(N)-v(S), & \text { if } T=N \backslash S \\ v(T), & \text { otherwise }\end{cases}
$$

## Effectiveness, exactness

- A coalition $S$ is exact if $x(S)=v(S)$ for some $x \in C(v)$.
- A coalition $S$ is effective if $x(S)=v(S)$ for all $x \in C(v)$. We denote by $\mathcal{E}(v)$ the set of effective coalitions.
- For any coalition $S$ we define the game $\left(N, v^{S}\right)$ by

$$
v^{S}(T)= \begin{cases}v(N)-v(S), & \text { if } T=N \backslash S \\ v(T), & \text { otherwise }\end{cases}
$$

## Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let $v$ be a balanced game. Then a coalition $S$ is exact iff $\left(N, v^{S}\right)$ is balanced.

## Effectiveness, exactness

- A coalition $S$ is exact if $x(S)=v(S)$ for some $x \in C(v)$.
- A coalition $S$ is effective if $x(S)=v(S)$ for all $x \in C(v)$. We denote by $\mathcal{E}(v)$ the set of effective coalitions.
- For any coalition $S$ we define the game $\left(N, v^{S}\right)$ by

$$
v^{S}(T)= \begin{cases}v(N)-v(S), & \text { if } T=N \backslash S \\ v(T), & \text { otherwise }\end{cases}
$$

## Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

Let $v$ be a balanced game. Then a coalition $S$ is exact iff $\left(N, v^{S}\right)$ is balanced.

## Proposition (Laplace Mermoud, G. and Sudhölter, 2023)

$\mathcal{E}(v)$ is the union of all the minimal balanced collections $\mathcal{B}$ such that

$$
\sum_{S \in \mathcal{B}} \lambda_{S}^{\mathcal{B}} v(S)=v(N)
$$

## Outline

1. TU-games and the like
2. Balanced collections

## 3. Applications

3.1. Nonemptiness of the core
3.2. Exactness, effectiveness
3.3. Core stability
4. Geometry of the set of balanced games

## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies
- external stability: $\forall y \notin U, \exists x \in U$ such that $x \operatorname{dom} y$;


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies
- external stability: $\forall y \notin U, \exists x \in U$ such that $x$ dom $y$;
- internal stability: $x$ dom $y \& y \in U \Longrightarrow x \notin U$.


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies
- external stability: $\forall y \notin U, \exists x \in U$ such that $x$ dom $y$;
- internal stability: $x$ dom $y \& y \in U \Longrightarrow x \notin U$.
- Stable sets may not exist, may be not unique, not convex...


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x$ doms $_{s} y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies
- external stability: $\forall y \notin U, \exists x \in U$ such that $x$ dom $y$;
- internal stability: $x$ dom $y \& y \in U \Longrightarrow x \notin U$.
- Stable sets may not exist, may be not unique, not convex...
- If the core is stable, then it is the unique stable set of the game.


## Stable sets

- Let $X(v)=\left\{x \in \mathbb{R}^{N}: x(N)=v(N)\right\}$ and $I(v)=\left\{x \in X(v): x_{i} \geqslant v(\{i\}), \forall i \in N\right\}$ (imputations)
- Let $x, y \in X(v)$ and $S \in 2^{N} \backslash\{\emptyset, N\}$. Then $x$ dominates $y$ via $S$ ( $x \operatorname{dom}_{s} y$ ) if:
- $x_{i}>y_{i}, \forall i \in S$
- $x(S) \leq v(S)$
- $x$ dominates $y(x$ dom $y)$ if $x \operatorname{dom}_{S} y$ for some $S$
- (Von Neumann and Morgenstern, 1944) $U \subseteq I(v)$ is a stable set if it satisfies
- external stability: $\forall y \notin U, \exists x \in U$ such that $x$ dom $y$;
- internal stability: $x$ dom $y \& y \in U \Longrightarrow x \notin U$.
- Stable sets may not exist, may be not unique, not convex...
- If the core is stable, then it is the unique stable set of the game.
- G. and Sudhölter (2021) found a (finite!) (but very combinatorial!!) necessary and sufficient condition for core stability using nested minimal balanced collections.


## Why a

- Assuming $C(v) \neq \emptyset$, the core is stable iff

$$
\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)
$$

Why a nested balancedness condition?

- Assuming $C(v) \neq \emptyset$, the core is stable iff

$$
\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)
$$

- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Assuming $C(v) \neq \emptyset$, the core is stable iff
$\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)$
- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

$$
\exists x \in X(v), x(S) \geqslant v(S) \forall S
$$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Assuming $C(v) \neq \emptyset$, the core is stable iff
$\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)$
- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

$$
\exists x \in X(v), x(S) \geqslant v(S) \forall S
$$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).
- Assuming $C(v) \neq \emptyset$, the core is stable iff
$\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)$
- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

$$
\exists x \in X(v), x(S) \geqslant v(S) \forall S
$$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).
- Taking a similar approach, we replace each test on a continuous variable by a finite balancedness condition
- Assuming $C(v) \neq \emptyset$, the core is stable iff
$\forall y \in X(v) \backslash C(v), \exists x(y)=: x \in C(v), \exists S \in 2^{N}, x_{S} \gg y_{S}, x(S)=v(S)$
- 2 quantifiers on 2 variables in uncountable sets + linear inequalities
- Recall: test of nonemptiness of the core:

$$
\exists x \in X(v), x(S) \geqslant v(S) \forall S
$$

(1 quantifier on 1 variable in an uncountable set + linear inequalities)

- Bondareva-Shapley permits to reduce to a finite number of tests (=number of minimal balanced collections).
- Taking a similar approach, we replace each test on a continuous variable by a finite balancedness condition
$\Rightarrow$ nested balancedness condition


## Balanced sets

## Definition

Let $Z \subseteq \mathbb{R}_{+}^{N} \backslash\{0\}$ be a finite set. $Z^{\prime} \subseteq Z$ is a balanced set if there exists a nonnegative balancing vector $\left(\delta_{z}\right)_{z \in Z^{\prime}}$ such that $\sum_{z \in Z^{\prime}} \delta_{z} z=1^{N}$.

## Balanced sets

## Definition

Let $Z \subseteq \mathbb{R}_{+}^{N} \backslash\{0\}$ be a finite set. $Z^{\prime} \subseteq Z$ is a balanced set if there exists a nonnegative balancing vector $\left(\delta_{z}\right)_{z \in Z^{\prime}}$ such that $\sum_{z \in Z^{\prime}} \delta_{z} z=1^{N}$.

- We say that a balanced subset is minimal if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most $n$ vectors.


## Balanced sets

## Definition

Let $Z \subseteq \mathbb{R}_{+}^{N} \backslash\{0\}$ be a finite set. $Z^{\prime} \subseteq Z$ is a balanced set if there exists a nonnegative balancing vector $\left(\delta_{z}\right)_{z \in Z^{\prime}}$ such that $\sum_{z \in Z^{\prime}} \delta_{z} z=1^{N}$.

- We say that a balanced subset is minimal if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most $n$ vectors.
- Let $Z=\left\{z^{1}, \ldots, z^{q}\right\} \subseteq \mathbb{R}_{+}^{N}$ with $q \leqslant n$. Consider the matrix $A^{Z}$ made by the column vectors $z^{1}, \ldots, z^{q}$. Then $Z$ is a minimal balanced set if the following linear system in $\delta \in \mathbb{R}^{q}$

$$
A^{Z} \delta=\mathbf{1}^{N}
$$

has a unique solution which is positive.

## Balanced sets

## Definition

Let $Z \subseteq \mathbb{R}_{+}^{N} \backslash\{0\}$ be a finite set. $Z^{\prime} \subseteq Z$ is a balanced set if there exists a nonnegative balancing vector $\left(\delta_{z}\right)_{z \in Z^{\prime}}$ such that $\sum_{z \in Z^{\prime}} \delta_{z} z=1^{N}$.

- We say that a balanced subset is minimal if it does not contain a proper subset that is balanced (equivalently, if there is a unique balancing vector). Minimal balanced sets have at most $n$ vectors.
- Let $Z=\left\{z^{1}, \ldots, z^{q}\right\} \subseteq \mathbb{R}_{+}^{N}$ with $q \leqslant n$. Consider the matrix $A^{Z}$ made by the column vectors $z^{1}, \ldots, z^{q}$. Then $Z$ is a minimal balanced set if the following linear system in $\delta \in \mathbb{R}^{q}$

$$
A^{Z} \delta=\mathbf{1}^{N}
$$

has a unique solution which is positive.

- No specific algorithm for generating them so far...


## Core stability: main result

## Theorem (G. and Sudhölter, 2021)

Let $(N, v)$ be a balanced game. Then $v$ has a stable core if and only if for every feasible collection $\mathcal{S}$ and every $\left(\mathcal{B}_{S}\right)_{S \in \mathcal{S}} \in \mathbb{C}(\mathcal{S})$, either

$$
\begin{gathered}
\exists Z^{\prime} \in \mathbb{B}\left(\mathcal{S},\left(\mathcal{B}_{S}\right)_{S \in \mathcal{S}}\right) \backslash \mathbb{B}_{0}\left(\mathcal{S},\left(\mathcal{B}_{S}\right)_{S \in \mathcal{S}}\right): \sum_{z \in Z^{\prime}} \delta_{z}^{Z^{\prime}} a_{z}>v(N) \text { holds or } \\
\exists Z^{\prime} \in \mathbb{B}_{0}\left(\mathcal{S},\left(\mathcal{B}_{S}\right)_{S \in \mathcal{S}}\right): \sum_{z \in Z^{\prime}} \delta_{z}^{Z^{\prime}} a_{z} \geq v(N) \text { holds. }
\end{gathered}
$$

## Outline

1. TU-games and the like
2. Balanced collections
3. Applications
4. Geometry of the set of balanced games

## Balanced games

(joint work with P. Miranda and P. Garcia Segador) Four sets are of interest:

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B \mathcal { G } _ { \alpha }}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$
(3) The set $\mathcal{B} \mathcal{G}_{+}(n)$ of balanced games $v$ on $N$ such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B} \mathcal{G}_{\alpha}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$
(3) The set $\mathcal{B} \mathcal{G}_{+}(n)$ of balanced games $v$ on $N$ such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$
(3) The set $\mathcal{B} \mathcal{G}_{+}(n)$ of balanced games $v$ on $N$ such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B} \mathcal{G}_{\alpha}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$
(3) The set $\mathcal{B \mathcal { G } _ { + }}(n)$ of balanced games $v$ on $N$ such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.
$\rightarrow$ We focus on $\mathcal{B} \mathcal{G}_{+}(n)$ and $\mathcal{B G}(n)$.

## Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games $v$ on $N$ such that $v(N)=\alpha$
(3) The set $\mathcal{B} \mathcal{G}_{+}(n)$ of balanced games $v$ on $N$ such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.
$\rightarrow$ We focus on $\mathcal{B} \mathcal{G}_{+}(n)$ and $\mathcal{B G}(n)$.
Notation: $\mathfrak{B}^{*}(n)$ : set of m.b.c. on $N$, except $\{N\}$.

## Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

## Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

$-\hookrightarrow \mathcal{B} \mathcal{G}_{+}(n)$ is a convex polytope. What are its vertices?

## Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B G _ { + }}(n)$ is a convex polytope. What are its vertices?


## Theorem

$v$ is a vertex of $\mathcal{B G}_{+}(n)$ if and only if $v$ is balanced and 0-1-valued.

## Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B G _ { + }}(n)$ is a convex polytope. What are its vertices?


## Theorem

$v$ is a vertex of $\mathcal{B G}_{+}(n)$ if and only if $v$ is balanced and 0-1-valued.

## Theorem

$v \in \mathcal{B G}_{+}(n)$ is a vertex iff either $v=0$ or it has the following form:

$$
v(S)= \begin{cases}1, & \text { if } S \in \mathcal{D} \\ 0, & \text { otherwise }\end{cases}
$$

where $\mathcal{D} \subseteq 2^{N}$ such that $\bigcap \mathcal{D} \neq \varnothing$.

## Structure of $\mathcal{B G}_{+}(n)$

## Lemma

Consider a vertex $v$ of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection $\mathcal{D}$. Then the dimension of the core of $v$ is $|\bigcap \mathcal{D}|-1$

## Structure of $\mathcal{B G}_{+}(n)$

## Lemma

Consider a vertex $v$ of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection $\mathcal{D}$. Then the dimension of the core of $v$ is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in $\mathbb{R}^{n}$ with $i$ th component equal to 1 , and 0 otherwise.

## Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

## Lemma

Consider a vertex $v$ of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection $\mathcal{D}$. Then the dimension of the core of $v$ is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in $\mathbb{R}^{n}$ with ith component equal to 1 , and 0 otherwise.

## Theorem

The number of vertices $v_{n}$ of $\mathcal{B G}_{+}(n)$ is given by $v_{n}=f_{n}+1$ where $f_{n}$ is defined recursively as follows:

$$
f_{n}=\sum_{k=1}^{n-1}\binom{n}{k}\left(2^{2^{k}-1}-f_{k}-1\right), \forall n>1 \text { and } f_{1}=0
$$

## Structure of $\mathcal{B G}_{+}(n)$

## Lemma

Consider a vertex $v$ of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection $\mathcal{D}$. Then the dimension of the core of $v$ is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in $\mathbb{R}^{n}$ with ith component equal to 1 , and 0 otherwise.

## Theorem

The number of vertices $v_{n}$ of $\mathcal{B G}_{+}(n)$ is given by $v_{n}=f_{n}+1$ where $f_{n}$ is defined recursively as follows:

$$
f_{n}=\sum_{k=1}^{n-1}\binom{n}{k}\left(2^{2^{k}-1}-f_{k}-1\right), \forall n>1 \text { and } f_{1}=0
$$

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{n}$ | 1 | 3 | 19 | 471 | 162631 | 12884412819 | $6.456 e+19$ | $1.361 e+39$ |

## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.


## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define


## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game $u_{S}$ by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise


## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game $u_{S}$ by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game $\delta_{S}$ by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise


## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game $u_{S}$ by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game $\delta_{S}$ by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise


## Theorem

Let $n \geqslant 2$. Then $\mathcal{B G}(n)$ is $\left(2^{n}-1\right)$-dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathcal{B G}(n))$ has dimension $n$, with basis $\left(w_{i}\right)_{i \in N}, w_{i}=u_{\{i\}}$, the unanimity game centered on $\{i\}$

## Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game $u_{S}$ by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game $\delta_{S}$ by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise


## Theorem

Let $n \geqslant 2$. Then $\mathcal{B G}(n)$ is $\left(2^{n}-1\right)$-dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathcal{B G}(n))$ has dimension $n$, with basis $\left(w_{i}\right)_{i \in N}, w_{i}=u_{\{i\}}$, the unanimity game centered on $\{i\}$

As $\mathcal{B G}(n)$ is not pointed, it can be decomposed as follows:

$$
\mathcal{B G}(n)=\operatorname{Lin}(\mathcal{B G}(n)) \oplus \mathcal{B G}^{0}(n)
$$

where $\mathcal{B} \mathcal{G}^{0}(n)$ is a supplementary space (not unique), chosen so that the coordinates corresponding to singletons are zero.

## Structure of $\mathcal{B} \mathcal{G}(n)$

## Theorem

Let $n \geqslant 2$. The extremal rays of $\mathcal{B G}(n)$ are

- The $2 n$ extremal rays corresponding to $\operatorname{Lin}(\mathcal{B G}(n))$ : $w_{1}, \ldots, w_{n},-w_{1}, \ldots,-w_{n}$;
- $2^{n}-n-2$ extremal rays of the form $r_{S}=-\delta_{S}, S \subset N,|S|>1$;
- $n$ extremal rays of the form

$$
r_{i}=\sum_{S \ni i,|S|>1} \delta_{S}, \quad i \in N .
$$

This yields in total $2^{n}+2 n-2$ extremal rays.

## Structure of $\mathcal{B} \mathcal{G}(n)$

## Theorem

Let $n \geqslant 2$. The extremal rays of $\mathcal{B G}(n)$ are

- The $2 n$ extremal rays corresponding to $\operatorname{Lin}(\mathcal{B G}(n))$ :

$$
w_{1}, \ldots, w_{n},-w_{1}, \ldots,-w_{n}
$$

- $2^{n}-n-2$ extremal rays of the form $r_{S}=-\delta_{S}, S \subset N,|S|>1$;
- $n$ extremal rays of the form

$$
r_{i}=\sum_{S \ni i,|S|>1} \delta_{S}, \quad i \in N .
$$

This yields in total $2^{n}+2 n-2$ extremal rays.

## Lemma

The cores of $w_{i},-w_{i}, r_{i}, r_{S}$ for all $i \in N, S \subset N,|S|>1$ are singletons (respectively, $\left\{1^{\{i\}}\right\},\left\{-1^{\{i\}}\right\},\left\{1^{\{i\}}\right\},\{0\}$ ).

## Structure of $\mathcal{B} \mathcal{G}(n)$


$\operatorname{Lin}(\mathcal{B G}(n))$

## When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.


## When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.
- However, in the case of $\mathcal{B} \mathcal{G}_{+}(n)$, not all vertices have a point core: a vertex $v$ has a point core iff its support $\mathcal{D}$ is s.t. $|\cap \mathcal{D}|=1$.


## When is the core reduced to a point?

General result: a game in the interior of $\mathcal{B G}_{+}(n)($ or $\mathcal{B G}(n))$ does not have a point core.

## When is the core reduced to a point?

General result: a game in the interior of $\mathcal{B G}_{+}(n)($ or $\mathcal{B G}(n))$ does not have a point core.

Case of $\mathcal{B} \mathcal{G}_{+}(n)$ :
Lemma
Suppose $v, v^{\prime}$ are adjacent vertices of $\mathcal{B G}_{+}(n)$. Then a game on the edge defined by $v, v^{\prime}$ has a point core iff $v, v^{\prime}$ have a point core.

## When is the core reduced to a point?

General result: a game in the interior of $\mathcal{B G}_{+}(n)($ or $\mathcal{B G}(n))$ does not have a point core.

Case of $\mathcal{B} \mathcal{G}_{+}(n)$ :

## Lemma

Suppose $v, v^{\prime}$ are adjacent vertices of $\mathcal{B} \mathcal{G}_{+}(n)$. Then a game on the edge defined by $v, v^{\prime}$ has a point core iff $v, v^{\prime}$ have a point core.

More generally:

## Lemma

Consider $v$ in the relative interior of a $p-\operatorname{dim}$ face of $\mathcal{B G}_{+}(n)$. Then $v$ has a point core iff all vertices defining the face have a point core.

## When is the core reduced to a point? Case of $\mathcal{B} \mathcal{G}(n)$

## Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.

## When is the core reduced to a point? Case of $\mathcal{B} \mathcal{G}(n)$

## Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.
We recall that facets of $\mathcal{B G}(n)$ are in bijection with the elements of $\mathfrak{B}^{*}(n)$, i.e., minimal balanced collections.

## Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^{*}(n)$ and its corresponding facet in $\mathcal{B G}(n)$.
(1) If $|\mathcal{B}|=n$, every game in the facet has a point core.
(2) Otherwise, no game in the relative interior of the facet has a point core.

## When is the core reduced to a point? Case of $\mathcal{B G}(n)$

## Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.
We recall that facets of $\mathcal{B G}(n)$ are in bijection with the elements of $\mathfrak{B}^{*}(n)$, i.e., minimal balanced collections.

## Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^{*}(n)$ and its corresponding facet in $\mathcal{B G}(n)$.
(1) If $|\mathcal{B}|=n$, every game in the facet has a point core.
(2) Otherwise, no game in the relative interior of the facet has a point core.

## Theorem

Consider a face $\mathcal{F}$ of $\mathcal{B G}(n)$, being the interection of facets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{p}$ with associated m.b.c. $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$. Then any game in $\mathcal{F}$ has a point core iff the rank of the matrix $\left\{1^{S}, S \in \mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{p}\right\}$ is $n$.

## The case $n=3$

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and $r_{1}, r_{2}, r_{3}$.

## The case $n=3$

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and $r_{1}, r_{2}, r_{3}$.

| m.b.c. | $-\delta_{12}$ | $-\delta_{13}$ | $-\delta_{23}$ | $r_{1}$ | $r_{2}$ | $r_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{B}_{1}=\{1,2,3\}$ | $\times$ | $\times$ | $\times$ |  |  |  |
| $\mathcal{B}_{2}=\{1,23\}$ | $\times$ | $\times$ |  |  | $\times$ | $\times$ |
| $\mathcal{B}_{3}=\{2,13\}$ | $\times$ |  | $\times$ | $\times$ |  | $\times$ |
| $\mathcal{B}_{4}=\{3,12\}$ |  | $\times$ | $\times$ | $\times$ | $\times$ |  |
| $\mathcal{B}_{5}=\{12,13,23\}$ |  |  |  | $\times$ | $\times$ | $\times$ |

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and $r_{1}, r_{2}, r_{3}$.

| m.b.c. | $-\delta_{12}$ | $-\delta_{13}$ | $-\delta_{23}$ | $r_{1}$ | $r_{2}$ | $r_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{B}_{1}=\{1,2,3\}$ | $\times$ | $\times$ | $\times$ |  |  |  |
| $\mathcal{B}_{2}=\{1,23\}$ | $\times$ | $\times$ |  |  | $\times$ | $\times$ |
| $\mathcal{B}_{3}=\{2,13\}$ | $\times$ |  | $\times$ | $\times$ |  | $\times$ |
| $\mathcal{B}_{4}=\{3,12\}$ |  | $\times$ | $\times$ | $\times$ | $\times$ |  |
| $\mathcal{B}_{5}=\{12,13,23\}$ |  |  |  | $\times$ | $\times$ | $\times$ |



## That's all for the moment...

## Thank you for your attention!

