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Introduction

o Cooperative games with transferable utility (TU-games) are merely
set functions on a finite set vanishing on the empty set.
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Introduction

o Cooperative games with transferable utility (TU-games) are merely
set functions on a finite set vanishing on the empty set.

@ This wide definition makes them appear in various fields of discrete
mathematics: combinatorial optimization and operations research,
game theory, decision theory, imprecise probabilities, etc.

@ A central notion related to TU-games is the core: it has its
counterpart in all of the above mentioned fields.

@ Games with a nonempty core are the balanced games, where the key
notion behind is the notion of balanced collection of sets.

@ This talk is about balanced collections and balanced games, whose
structure remains largely unexplored.
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Outline
1. TU-games and the like
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.
@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
e x € RN is a payoff vector. Notation: for every S C N,

x(S) = ZX,'

i€eS
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.

@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
e x € RN is a payoff vector. Notation: for every S C N,
x(S) = Z X;
ieS

@ Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x, called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.
@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
e x € RN is a payoff vector. Notation: for every S C N,
x(S) = Z X;
ieS

@ Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x, called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).

@ One of the best known solution: the core (Gillies, 1953)
C(v) = {x e RN : x(5) > v(S)VS,x(N) = v(N)}

(coalitional rationality, or stability of the grand coalition N)
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TU-games in other domains

@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.
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@ The lower envelope of a convex set of probability measures is a
capacity (imprecise probabilities (Walley, 1991)).
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TU-games in other domains

@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.

@ The lower envelope of a convex set of probability measures is a
capacity (imprecise probabilities (Walley, 1991)).

@ Probability measures are additive capacities:
v(AU B) = v(A) + v(B) for disjoint A, B

@ The core of a capacity v is:
C(v) = {x e RN : x(5) > v(S)VS,x(N) = 1}

i.e., x € C(v) can be interpreted as a probability measure
dominating (compatible with) v.
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TU-games in other domains

@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.

@ The lower envelope of a convex set of probability measures is a
capacity (imprecise probabilities (Walley, 1991)).

@ Probability measures are additive capacities:
v(AU B) = v(A) + v(B) for disjoint A, B

@ The core of a capacity v is:
C(v) = {x e RN : x(5) > v(S)VS,x(N) = 1}

i.e., x € C(v) can be interpreted as a probability measure
dominating (compatible with) v.

@ In combinatorial optimization, when v is submodular, it can be seen
as the rank function of a matroid. Then the (anti-)core of v is the
base polyhedron of v (Edmonds, 1970).
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2. Balanced collections
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Balanced collections

o (Shapley, 1967) A collection B C 2N of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
> ast? =1
SeB
(i.e., forevery i€ N, > 55 scpAs = 1)(1V is in the relative interior

of the cone generated by the 1°, S € B).
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Balanced collections

o (Shapley, 1967) A collection B C 2N of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
> ast? =1
SeB
(i.e., forevery i€ N, > 55 scpAs = 1)(1V is in the relative interior
of the cone generated by the 1°, S € B).
® (As)ses are the balancing weights.
@ Examples:

o Every partition (balancing weights: 1)
o n=3: {12,13,23} with A= (3,1, 1)
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Balanced collections

o (Shapley, 1967) A collection B C 2N of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
> ast? =1
SeB
(i.e., forevery i€ N, > 55 scpAs = 1)(1V is in the relative interior
of the cone generated by the 1°, S € B).
® (As)ses are the balancing weights.
@ Examples:
o Every partition (balancing weights: 1)
o n=3 {12,13,23} with A= (3,1, 1)
o n=4 {12,13,14,234} with A = (1,11 2).
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Balanced collections

o (Shapley, 1967) A collection B C 2N of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
> ast? =1
SeB
(i.e., forevery i € N, 3 s sep As = 1)(1V is in the relative interior

of the cone generated by the 1°, S € B).

® (As)ses are the balancing weights.
@ Examples:
o Every partition (balancing weights: 1)
o n=3 {12,13,23} with A= (3,1, 1)
o n=4: {12,13,14,234} with A= (3,3,3.3).
@ A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
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Balanced collections

o (Shapley, 1967) A collection B C 2N of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
> ast? =1
SeB
(i.e., forevery i € N, 3 s sep As = 1)(1V is in the relative interior
of the cone generated by the 1°, S € B).
® (As)ses are the balancing weights.
@ Examples:
o Every partition (balancing weights: 1)
o n=3 {12,13,23} with A= (3,1, 1)
o n=4: {12,13,14,234} with A= (3,3,3.3).
@ A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
@ So far, the number of minimal balanced collections (m.b.c.) is
unknown beyond n = 4. A recursive algorithm has been proposed by

Peleg (1965).
234



What about balanced collections?

@ A collection of subsets of N which does not contain a balanced
collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).
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collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).

@ Equivalently, 1V is not in the cone generated by the 1°, S € B.
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What about balanced collections?

@ A collection of subsets of N which does not contain a balanced
collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).

@ Equivalently, 1V is not in the cone generated by the 1°, S € B.

@ unbalanced — not balanced, but not the converse!
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What about balanced collections?

@ A collection of subsets of N which does not contain a balanced
collection is said to be unbalanced. It is maximal if no
supercollection of it is unbalanced (Billera et al., 2012).

@ Equivalently, 1V is not in the cone generated by the 1°, S € B.
@ unbalanced — not balanced, but not the converse!

@ What is known so far:

n | Nb of maximal unbalanced collections
2

6

32

370

11,292
1,066,044
347,326,352
419,172,756,930
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Unbalanced collections and hyperplanes arrangements

@ By Farkas Lemma, it can be shown that a collection 8§ of nonempty
sets is unbalanced if and only if there exists y € RN such that

YienYi=0and > cy; >0forall Se8.
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Unbalanced collections and hyperplanes arrangements

@ By Farkas Lemma, it can be shown that a collection 8§ of nonempty
sets is unbalanced if and only if there exists y € RN such that

YienYi=0and > cy; >0forall Se8.
@ Examples:

(i) For n=3: {{1,2},{1,3},{1}},y =(2,-1,-1);
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Unbalanced collections and hyperplanes arrangements

@ By Farkas Lemma, it can be shown that a collection 8§ of nonempty
sets is unbalanced if and only if there exists y € RN such that
YienYi=0and > cy; >0forall Se8.

@ Examples:

(i) For n=3: {{1,2},{1,3},{1}},y =(2,-1,-1);

(i) For n=4: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}},
y=(3,-1,-1,-1).
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Unbalanced collections and hyperplanes arrangements

@ By Farkas Lemma, it can be shown that a collection 8§ of nonempty
sets is unbalanced if and only if there exists y € RN such that
YienYi=0and > cy; >0forall Se8.

@ Examples:

(i) For n=3: {{1,2},{1,3},{1}},y =(2,-1,-1);
(i) For n=4: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}},
y=(3,-1,-1,-1).

o In the hyperplane Hy = {x € RV | x(N) = 0}, consider the
hyperplanes {x € Hy | x(S) = 0}, for all S € 2N\ {&, N} (only
27=1 _ 1 distinct ones). There is a bijection between maximal
unbalanced collections and regions induced by the hyperplane
arrangement, which shows that maximal u.c. have 2n—1 _ 1 sets.
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x1 41/,12, 13} {2,12, 2\3}\ X

X2:0 x1:0
x1+x3=0 x2+x3=0

Figure: The restricted all-subset arrangement for n = 3 in the plane Hy. Arrows
indicate the normal vector to the hyperplane of the same color. The 6 maximal

unbalanced collections (subsets are written without comma and braces)

correspond to the 6 regions.
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Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhdlter (2023) implemented the Peleg
algorithm in Python, and found the following;:

Players | Minimal balanced collections CPU time
1 1 -
2 2 ~ 0.00 sec
3 6 ~ 0.01 sec
4 42 ~ 0.03 sec
5 1292 ~ 1.05 sec
6 200 214 ~ 4 min 4 sec
7 132 422 036 ~ 63 hours
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Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhdlter (2023) implemented the Peleg
algorithm in Python, and found the following;:

Players | Minimal balanced collections CPU time
1 1 -
2 2 ~ 0.00 sec
3 6 ~ 0.01 sec
4 42 ~ 0.03 sec
5 1292 ~ 1.05 sec
6 200 214 ~ 4 min 4 sec
7 132 422 036 ~ 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of
Integer Sequences (Sloane, 1964)) under the number A355042 (see
https://oeis.org/A355042).
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Back to balanced collections: practical implementation

Laplace Mermoud, G. and Sudhdlter (2023) implemented the Peleg
algorithm in Python, and found the following;:

Players | Minimal balanced collections CPU time
1 1 -
2 2 ~ 0.00 sec
3 6 ~ 0.01 sec
4 42 ~ 0.03 sec
5 1292 ~ 1.05 sec
6 200 214 ~ 4 min 4 sec
7 132 422 036 ~ 63 hours

N.B. 1: This sequence is now in the OEIS (On Line Encyclopedia of
Integer Sequences (Sloane, 1964)) under the number A355042 (see
https://oeis.org/A355042).

N.B. 2: We have stored the complete list of m.b.c. till n =7
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A comparison with a polyhedral approach

@ Consider the polytope W/(N) defined by

W(N) = {)\ c R2V\0} . Z As1° =1V As > 0,vS € 2\ {@}}
Se2M\ {0}
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Se2M\{p}

@ It is easy to check that the vertices of W/(N) are in bijection with
the minimal balanced collections on N, taking B :={S : As > 0}.
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A comparison with a polyhedral approach

@ Consider the polytope W/(N) defined by

W(N) = A e R ST 2615 =1M As > 0,vS €2V {0}
Se2M\{0}
@ It is easy to check that the vertices of W/(N) are in bijection with
the minimal balanced collections on N, taking B :={S : As > 0}.

@ Consequently, generating all minimal balanced collections of N
amounts to finding all vertices of W(N).
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A comparison with a polyhedral approach

@ Consider the polytope W/(N) defined by

W(N) = { x e RZ"\O} . Y as1® =1V A > 0,vs €2V )\ {0}
Se2M\{p}

@ It is easy to check that the vertices of W/(N) are in bijection with
the minimal balanced collections on N, taking B :={S : As > 0}.

@ Consequently, generating all minimal balanced collections of N
amounts to finding all vertices of W(N).

@ This vertex enumeration problem can be solved by the Avis-Fukuda
method (1992). Here are the CPU times when n = 6:

Peleg's algorithm | Avis-Fukuda algorithm
4mn 4s 29mn 24s

(pycddlib package used for Avis-Fukuda algorithm)
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3. Applications
3.1. Nonemptiness of the core
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (\%)scs, we have

> NEv(S) < v(N).
SeB

Moreover, none of the inequalities is redundant, except the one for

B = {N}.

Note: Games satisfying this condition are called balanced
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (\%)scs, we have

> NEv(S) < v(N).

SeB

Moreover, none of the inequalities is redundant, except the one for
B ={N}.

Note: Games satisfying this condition are called balanced
Equivalently, one can solve the following LP and check if the value of the
LP is equal to v(N):

min x(N)
sit. x(S) > v(S),vS € 2V \ {0}
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Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python),
run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley LP
0.96s 24 .85s

(Laplace Mermoud, G. and Sudhdlter, 2023)
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Nonemptiness of the core

Comparison of CPU time (native simplex method available in Python),
run on 5000 randomly chosen balanced TU-games with n = 6:

Bondareva-Shapley LP
0.96s 24 .85s

(Laplace Mermoud, G. and Sudhdlter, 2023)
Important note: m.b.c. do not depend on the game, only on N. Hence
they are generated only once for ever.
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3. Applications

3.2. Exactness, effectiveness
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Effectiveness, exactness

@ A coalition S is exact if x(S) = v(S) for some x € C(v).
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Effectiveness, exactness

@ A coalition S is exact if x(S) = v(S) for some x € C(v).
@ A coalition S is effective if x(S) = v(S) for all x € C(v). We
denote by &(v) the set of effective coalitions.
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Effectiveness, exactness

@ A coalition S is exact if x(S) = v(S) for some x € C(v).

@ A coalition S is effective if x(S) = v(S) for all x € C(v). We
denote by &(v) the set of effective coalitions.

o For any coalition S we define the game (N, v°) by

JS(T) = {v(/v) —v(S), ifT=N\S

v(T), otherwise.
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Effectiveness, exactness

@ A coalition S is exact if x(S) = v(S) for some x € C(v).
@ A coalition S is effective if x(S) = v(S) for all x € C(v). We
denote by &(v) the set of effective coalitions.
@ For any coalition S we define the game (N, v5) by
JS(T) = {v(/v) —v(S), fT=N\S

v(T), otherwise.

Proposition (Laplace Mermoud, G. and Sudhdlter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, v>) is
balanced.
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Effectiveness, exactness

@ A coalition S is exact if x(S) = v(S) for some x € C(v).

@ A coalition S is effective if x(S) = v(S) for all x € C(v). We
denote by &(v) the set of effective coalitions.

@ For any coalition S we define the game (N, v5) by

JS(T) = {V(N) —v(S), ifT=N\S

v(T), otherwise.

Proposition (Laplace Mermoud, G. and Sudhdlter, 2023)

Let v be a balanced game. Then a coalition S is exact iff (N, v>) is
balanced.

Proposition (Laplace Mermoud, G. and Sudhdlter, 2023)

&(v) is the union of all the minimal balanced collections B such that

> AEv(S) = v(N).

SeB

&
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3. Applications

3.3. Core stability
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Stable sets

o Let X(v) = {x € RN : x(N) = v(N)} and
I(v) ={x e X(v) : xi > v({i}),Vi € N} (imputations)
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o Let x,y € X(v) and S € 2N\ {), N}. Then x dominates y via S
(x doms y) if:
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@ x dominates y (x dom y) if x domg y for some S
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Stable sets

o Let X(v) = {x € RN : x(N) = v(N)} and
I(v) ={x e X(v) : xi > v({i}),Vi € N} (imputations)
o Let x,y € X(v) and S € 2N\ {), N}. Then x dominates y via S
(x doms y) if:
o x; >y,Vie$S
o x(S) < v(S)
@ x dominates y (x dom y) if x domg y for some S
@ (Von Neumann and Morgenstern, 1944) U C [(v) is a stable set if it
satisfies
o external stability: Yy ¢ U, 3x € U such that x dom y;
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Stable sets

o Let X(v) = {x € RN : x(N) = v(N)} and
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@ x dominates y (x dom y) if x domg y for some S
@ (Von Neumann and Morgenstern, 1944) U C [(v) is a stable set if it
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@ x dominates y (x dom y) if x domg y for some S
@ (Von Neumann and Morgenstern, 1944) U C [(v) is a stable set if it
satisfies
o external stability: Yy ¢ U, 3x € U such that x dom y;
o internal stability: x dom y & y e U = x ¢ U.
@ Stable sets may not exist, may be not unique, not convex...

@ If the core is stable, then it is the unique stable set of the game.

19/34 M. Grabisch ©2023 Balanced Games



Stable sets

o Let X(v) = {x € RN : x(N) = v(N)} and
I(v) ={x e X(v) : xi > v({i}),Vi € N} (imputations)
o Let x,y € X(v) and S € 2N\ {), N}. Then x dominates y via S
(x doms y) if:
o x; >y,Vie$S
e x(5) < v(S)
@ x dominates y (x dom y) if x domg y for some S
@ (Von Neumann and Morgenstern, 1944) U C [(v) is a stable set if it
satisfies
o external stability: Yy ¢ U, 3x € U such that x dom y;
e internal stability: x dom y & y e U — x & U.
@ Stable sets may not exist, may be not unique, not convex...
@ If the core is stable, then it is the unique stable set of the game.
@ G. and Sudholter (2021) found a (finite!) (but very combinatorial!!)
necessary and sufficient condition for core stability using nested
minimal balanced collections.
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Why a balancedness condition?

@ Assuming C(v) # (), the core is stable iff

Yy € X(v)\ C(v),3x(y) =: x € C(v),3S € 2V x5 > ys5,x(S) = v(S)
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Why a balancedness condition?

@ Assuming C(v) # 0, the core is stable iff
Yy € X(v)\ C(v),3x(y) =: x € C(v),3S € 2V x5 > ys5,x(S) = v(S)

@ 2 quantifiers on 2 variables in uncountable sets + linear inequalities

@ Recall: test of nonemptiness of the core:
Ix € X(v),x(S) = v(S)VS
(1 quantifier on 1 variable in an uncountable set + linear
inequalities)
@ Bondareva-Shapley permits to reduce to a finite number of tests
(=number of minimal balanced collections).

@ Taking a similar approach, we replace each test on a continuous
variable by a finite balancedness condition

= nested balancedness condition
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Balanced sets

Definition

Let Z C RY \ {0} be a finite set. Z’ C Z is a balanced set if there exists
a nonnegative balancing vector (8,),ez such that Y, , 6,z =1V.
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Balanced sets

Definition

Let Z C RY \ {0} be a finite set. Z’ C Z is a balanced set if there exists
a nonnegative balancing vector (8,),ez such that Y, , 6,z =1V.

@ We say that a balanced subset is minimal if it does not contain a
proper subset that is balanced (equivalently, if there is a unique
balancing vector). Minimal balanced sets have at most n vectors.
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Balanced sets

Definition

Let Z C RY \ {0} be a finite set. Z’ C Z is a balanced set if there exists
a nonnegative balancing vector (8,),ez such that Y, , 6,z =1V.

@ We say that a balanced subset is minimal if it does not contain a
proper subset that is balanced (equivalently, if there is a unique
balancing vector). Minimal balanced sets have at most n vectors.

o Let Z={z!,...,29} C RY with g < n. Consider the matrix AZ
made by the column vectors z1,...,z9. Then Z is a minimal
balanced set if the following linear system in § € R9

ALs = 1N

has a unique solution which is positive.
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Balanced sets

Definition

Let Z C RY \ {0} be a finite set. Z’ C Z is a balanced set if there exists
a nonnegative balancing vector (8,),ez such that Y, , 6,z =1V.

@ We say that a balanced subset is minimal if it does not contain a
proper subset that is balanced (equivalently, if there is a unique
balancing vector). Minimal balanced sets have at most n vectors.

o Let Z={z!,...,29} C RY with g < n. Consider the matrix AZ
made by the column vectors z1,...,z9. Then Z is a minimal
balanced set if the following linear system in § € R9

ALs = 1N

has a unique solution which is positive.

@ No specific algorithm for generating them so far...
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Core stability: main result

Theorem (G. and Sudhdlter, 2021)

Let (N, v) be a balanced game. Then v has a stable core if and only if
for every feasible collection § and every (Bs)ses € C(8), either

37" € B(S, (Bs)ses) \ Bo(S, (Bs)ses) : Y 6% a; > v(N) holds or
zeZ'

3Z' € Bo(S, (Bs)ses) : Y _ 07 a, > v(N) holds.
zeZ'
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Outline

4. Geometry of the set of balanced games
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Balanced games

(joint work with P. Miranda and P. Garcia Segador)
Four sets are of interest:
©Q The set BG(n) of balanced games on N = {1,...,n}
@ The set BG,(n) of balanced games v on N such that v(N) = «
© The set BG,(n) of balanced games v on N such that v > 0 (and
v(N) =1 arbitrarily fixed)
©Q The set BGy(n) of balanced games which are monotone and
v(N) =1, i.e., capacities

The set BGp(n) seems extremely difficult to study. Its structure is not
elucidated.

— We focus on BG,(n) and BG(n).

Notation: B*(n): set of m.b.c. on N, except {N}.
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
V(BS) >0, Se2VN\{z N}
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@ — BG, (n) is a convex polytope. What are its vertices?
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
V(BS) >0, Se2VN\{z N}

@ — BG, (n) is a convex polytope. What are its vertices?

v is a vertex of BG(n) if and only if v is balanced and 0-1-valued.

<

Theorem

v € BG,(n) is a vertex iff either v = 0 or it has the following form:
1, ifSeD
v(S) = { , Ifo e

0, otherwise,
where D C 2N such that D # @.

<
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.

The number of vertices v, of BG, (n) is given by v, = f, + 1 where f, is
defined recursively as follows:

n—1
f,,:Z(Z) (22k_1—fk—1>,Vn>1 and f; = 0
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.

The number of vertices v, of BG, (n) is given by v, = f, + 1 where f, is
defined recursively as follows:

n—1
f,,:Z(Z) (22k_1—fk—1>,Vn>1 and f; =0

k=1

n|l 2 3 4 5 6 7 8
vp |1 3 19 471 162631 12884412819 6.456e +19 1.361e + 39
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities

> Asv(S) —v(N) <0, Be B (n)
SeB
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@ BG(n) is determined by the following system of inequalities

> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
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@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB

@ — BG(n) is an unbounded convex polyhedron.

@ For any nonempty S C N, we define
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@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB

@ — BG(n) is an unbounded convex polyhedron.

@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise

Let n > 2. Then BY(n) is (2" — 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wj)ien, wi = ugjy, the unanimity game centered on {i}
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise

Let n > 2. Then BY(n) is (2" — 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wj)ien, wi = ugjy, the unanimity game centered on {i}

As BG(n) is not pointed, it can be decomposed as follows:
BG(n) = Lin(BG(n)) ® BG°(n)

where BG%(n) is a supplementary space (not unique), chosen so that the
coordinates corresponding to singletons are zero.
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Structure of BG(n)

Let n > 2. The extremal rays of BG(n) are

@ The 2n extremal rays corresponding to Lin(BG(n)):
Wi,...,Wp, —Wq,..., —Wp,
@ 2" — n — 2 extremal rays of the form rs = —ds, S C N, |S| > 1;

@ n extremal rays of the form

r= Z 8s, i€ N.

53i,|S|>1

This yields in total 2" 4+ 2n — 2 extremal rays.
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Structure of BG(n)

Theorem

Let n > 2. The extremal rays of BG(n) are
@ The 2n extremal rays corresponding to Lin(BG(n)):
Wi,...,Wp, —Wq,..., —Wp,
@ 2" — n — 2 extremal rays of the form rs = —ds, S C N, |S| > 1;

@ n extremal rays of the form

ri = Z ds, I€N.

53i,|S|>1

This yields in total 2" 4+ 2n — 2 extremal rays.

Lemma
The cores of w;, —w;, rj, rs for all i € N, S C N, |S| > 1 are singletons

(respectively, {1171}, {—111} (111)) {0}).
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Structure of BG(n)

BG°(n)

Lin(BS(n))
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When is the core reduced to a point?

@ In the case of BY(n), all extremal rays have a point core.
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When is the core reduced to a point?

@ In the case of BY(n), all extremal rays have a point core.

@ However, in the case of BG, (n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |[D| = 1.
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When is the core reduced to a point?

General result: a game in the interior of BG(n) (or BG(n)) does not
have a point core.
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When is the core reduced to a point?

General result: a game in the interior of BG(n) (or BG(n)) does not
have a point core.

Case of BG (n):

Suppose v, v’ are adjacent vertices of BG (n). Then a game on the edge
defined by v, v’ has a point core iff v,v' have a point core.
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When is the core reduced to a point?

General result: a game in the interior of BG(n) (or BG(n)) does not
have a point core.

Case of BG (n):

Suppose v, v’ are adjacent vertices of BG (n). Then a game on the edge
defined by v, v’ has a point core iff v,v' have a point core.

More generally:

Consider v in the relative interior of a p-dim face of BG(n). Then v has
a point core iff all vertices defining the face have a point core.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B*(n), i.e., minimal balanced collections.

Consider a m.b.c. B € B*(n) and its corresponding facet in BG(n).

©Q If|B| = n, every game in the facet has a point core.

© Otherwise, no game in the relative interior of the facet has a point
core.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B*(n), i.e., minimal balanced collections.

Consider a m.b.c. B € B*(n) and its corresponding facet in BG(n).

©Q If|B| = n, every game in the facet has a point core.

© Otherwise, no game in the relative interior of the facet has a point
core.

Consider a face F of BG(n), being the interection of facets F1,...,Fp
with associated m.b.c. By,...,B,. Then any game in J has a point core
iff the rank of the matrix {1°,S € By U---UB,} is n.
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The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012, =013, —023, and ry, 2, r3.
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The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012,—013, =023, and r1, 2, 3.

m.b.c. —012 | =013 | =03 | n|n|n
B, ={1,2,3} X X X
B, ={1,23} X X X | %
Bz ={2,13} X X X X
By ={3,12} X X X | %
Bs = {12,13,23} x| x| x
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The case n =3

The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012, =013, —023, and ry, 2, r3.

m.b.c. —012 | =013 | =03 | n|n|n
B, ={1,2,3} X X X
B, ={1,23} X X X | %
Bz ={2,13} X X X X
By ={3,12} X X X | %
Bs = {12,13,23} x| x| x
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That’s all for the moment...

Thank you for your attention !
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