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Background

Task: Test whether data originated from speci�c population given a model and external information.

Problem: External information is sparse (only moment type information is known) and uncertain
(only bounds on the true value are known).

Techniques for incorporating external information: Prior distributions in Bayesian statistics,
Constrained optimization, Generalized Method of Moments (GMM) [2]
⇒ Using GMM, external moment type information can be directly combined with moment conditions
used to estimate a statistical model [3], and the Sargan-Hansen test [2] becomes a coherence test.

Scope of GMM: OLS, Maximum Likelihood (score function), M-estimation and many more

Example

Simple linear regression model: y = β1 +xβ2 + ε

External information: E(y) = 100

Assuming E(ε) = 0, the value E(y) = 100 be-
comes a constraint on the parameter,

100 = E(y) = β1 + E(x)β2. (1)

How can (1) be used in constrained optimization
or to identify possible prior distributions?

Interval-Valued Case

A closed interval Iex containing the true external value e0 is known.
⇒ Interval of possible test statistics [χ2, χ2] (independent of θ!) with

asymptotic χ2(λ)−distributions, where λ ∈ [0,∞).

Desired property of a coherence test:
Test decides that e0 /∈ Iex. ⇒ Test decides that e0 /∈ I for all I ⊂ Iex.

⇒ Γ−maximin rule for selecting a p-value

� Credal set: Indicator functions of all events {χ2
e
≤ −nQ̂}, where

χ2
e
∈ [χ2, χ2] is �xed in each case (p-value events)

� Lower probabilities are obtained for the central χ2−distribution, be-
cause χ2(λ)−distributions are stochastically ordered in λ.

� The maximum lower probability (p-value of the interval test) is ob-
tained with χ2 and a central χ2−distribution.

Results: Two asymptotic tests, SH(Ŝh) and SH(Σ̂h); Small sample tests

under the normality assumption are the same for Σ̂h and Ŝh ⇒ IDC.

Point-Valued Case

Construction of the Sargan-Hansen test for n given data vectors zi i.i.d
like z, model parameters θ and external (point) information e:

1. De�ne moment functionsm(z,θ) (for the model) and h(z, e) (for the
external information), both with expected value 0, and let
g(z,θ) := (m(z,θ)T ,h(z)T )T .

2. Find a consistent, (almost certainly) positive-de�nite estimator, Ω̂

of E(g(z,θ)g(z,θ)T ) and let Ŵ := Ω̂
−1

, if the inverse exists.

3. Determine the maximum value Q̂ of the objective function
Q̂n(θ) = −( 1

n

∑n
i=1 g(zi,θ))TŴ( 1

n

∑n
i=1 g(zi,θ)).

⇒ Under the regularity conditions for GMM −nQ̂ d→ χ2
p−q.

Main result:

m− Ĉov(h,m)T V̂ar(h)−1h = 0 for a θh ⇒ −nQ̂ = nh
T
V̂ar(h)−1h

⇒ In many relevant cases (e.g. OLS), the test statistic is a
function of the external information and the data alone.

Chosen examples of V̂ar(h):

� Σ̂h = 1
n

∑n
i=1 h(zi)h(zi)

T (dependent on e)

� Ŝh = 1
n−1

∑n
i=1(h(zi)− h)(h(zi)− h)T (independent of e)

Simulations

Scenario: x ∼ N(4, 4) and y = 16 + x+ ε, with ε ∼ N(0, 60) ⇒ linear regression under Gauss-Markov assumptions with R2 = 0.0625

Sampling: (xi, yi) i.i.d like (x, y) with i = 1, . . . , n for n = 30 and n = 50

External moments: E(x), E(y), Var(y) (using the sample variance formula) and combinations thereof

Iex: Let e0 be the true moment value ⇒ [0.95 · e0, 1.05 · e0] (type 1 error setting) and [1.2 · e0, 1.3 · e0] (power setting)

For each of the 28 scenarios, the null hypothesis rejection rates of the three tests were calculated in R (α = 0.05), simulating each scenario 10000 times.

Results

� Type I errors of E(x) and E(y) are substantially smaller than α and combinations of moments

do not lead to a substantial increase in power; Conservativity: SH(Ŝh) < IDC < SH(Σ̂h)

� Using Var(y) alone leads to high type I error rates and low power. ⇒ The true distribution
deviates too much from the normal distribution.

� Using Var(y) in combination with other moments can reduce type I error rates and increase
power compared to using Var(y) alone.

Further Research

� Use the Γ−maximin decision rule to intro-
duce (external) intervals into econometric
and psychometric procedures

� Compare interval-valued GMM approach
with generalized Bayes approach

� Analyze the level of robustness
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