On the Relationship between

 Graphical and Compositional Models for the Dempster-Shafer Theory of Belief FunctionsRadim Jiroušek, Václav Kratochvíl and Prakash P. Shenoy
ÚTIA, Czech Academy of Sciences

Dempster's combination

using commonality functions for distinct BPAs:

$$
Q_{m_{1} \oplus m_{2}}(\mathrm{a})=\frac{1}{K} Q_{m_{1}}\left(\mathrm{a}^{\downarrow r}\right) Q_{m_{2}}\left(\mathrm{a}^{\downarrow s}\right)
$$

Directed graphical model

DAG + system of conditional BPAs: $m_{X \mid P a(X)}$
$m=m_{B} \oplus m_{S} \oplus m_{O \mid B} \oplus m_{A \mid O} \oplus m_{T \mid A, S} \oplus m_{M \mid B, T}$
Distinctness is guaranteed by combining "conditionals.": For node $X, m_{\{X\} \cup p a(X)}^{\downarrow \operatorname{Pa(X)}}$ is vacuous.

f-composition

Consider BPAs m_{1} for r and m_{2} for s. Their f-composition is a BPA $m_{1} \triangleright_{f} m_{2}$ defined for each nonempty a $\subseteq \Omega_{r \cup s}$ by one of the following expressions:
(i) if $m_{2}^{\downarrow r \cap s}\left(\mathrm{a}^{\downarrow r \cap s}\right)>0$ and $\mathrm{a}=\mathrm{a}^{\downarrow r} \bowtie \mathrm{a}^{\downarrow s}$, then

$$
\left(m_{1} \triangleright_{f} m_{2}\right)(\mathrm{a})=\frac{m_{1}\left(\mathrm{a}^{\downarrow r}\right) \cdot m_{2}\left(\mathrm{a}^{\downarrow s}\right)}{m_{2}^{\downarrow r \cap s}\left(\mathrm{a}^{\downarrow r \cap s}\right)} ;
$$

(ii) if $m_{2}^{\downarrow r \cap s}\left(\mathrm{a}^{\downarrow r \cap s}\right)=0$ and $\mathrm{a}=\mathrm{a}^{\downarrow r} \times \Omega_{s \backslash r}$, then $\left(m_{1} \triangleright_{f} m_{2}\right)(\mathrm{a})=m_{1}\left(\mathrm{a}^{\downarrow r}\right) ;$
(iii) in all other cases, $\left(m_{1} \triangleright_{f} m_{2}\right)(\mathrm{a})=0$.

- f-composition is always defined

- There is a necessary and sufficient condition for $m_{1} \triangleright_{d} m_{2}=m_{1} \triangleright_{f} m_{2}$ if the respective conditional $m_{2} \ominus m_{2}^{\downarrow r \cap s}$ is non-negative.
- If d-composition is defined, then it is more specific than f-composition: $\operatorname{Bel}\left(m_{1} \triangleright_{d} m_{2}\right) \geq \operatorname{Bel}\left(m_{1} \triangleright_{f} m_{2}\right)$.
- f-composition can approximate the d-composition when it is undefined.

Dempster's decombination

The inverse of Dempster's combination, using commonality functions:

$$
\left(Q_{m \ominus m \downarrow s}\right)(\mathrm{a})=\left\{\begin{array}{cc}
\frac{1}{L} \frac{Q_{m}(\mathrm{a})}{\left.Q_{m \downarrow s}!!\mathrm{a}^{\downarrow s}\right)} & \text { if } Q_{m \downarrow s}(\mathrm{a})>0 \\
!!! & \text { otherwise }
\end{array}\right.
$$

d-composition

$$
m_{1} \triangleright_{d} m_{2}=m_{1} \oplus\left(m_{2} \ominus m_{2}^{\downarrow r \cap s}\right)
$$

Compositional models

Undirected graph $G+$ system of BPAs: $m_{\mathcal{C}}$ for all cliques \mathcal{C} of G connected using \triangleright_{d} or \triangleright_{f}

$$
\begin{aligned}
m & =m_{B} \oplus m_{S} \oplus m_{O \mid B} \oplus m_{A \mid O} \oplus m_{T \mid A, S} \oplus m_{M \mid B, T} \\
& =m_{B} \triangleright_{d} m_{S} \triangleright_{d} m_{O \mid B} \triangleright_{d} m_{A \mid O} \triangleright_{d} m_{T \mid A, S} \triangleright_{d} m_{M \mid B, T} \\
& =m^{\downarrow B} \triangleright_{d} m^{\downarrow S} \triangleright_{d} m^{\downarrow O, B} \triangleright_{d} m^{\downarrow A, O} \triangleright_{d} m^{\downarrow T, A, S} \triangleright_{d} m^{\downarrow M, B, T}
\end{aligned}
$$

Open problems

- Computational problems of \triangleright_{d}. Is there a way to compute $m \ominus m^{\downarrow s}$ for some (non-trivial) class of BPAs avoiding the transformation of m into CF?
- Dempster's decombination is not unique. E.g. for BPA m, for which \oplus is idempotent ($m \oplus m=m$) also $m \oplus \iota_{m}=m$.
- $m \ominus m^{\downarrow s}$ is often pseudo-BPA:
- How to recognize when $m_{1} \triangleright_{d} m_{2}$ is a non-negative BPA?
- Do there exist some necessary and sufficient condition for $m_{1} \triangleright_{d} m_{2}=m_{1} \triangleright_{f} m_{2}$ even when the respective conditional $m_{2} \ominus m_{2}^{\downarrow r \cap s}$ is not non-negative.
- How to create conditional BPAs? Is there a possibility to computing conditional when $m \ominus m^{\downarrow s}$ is pseudo-BPAs

