On the Relationship between Graphical and Compositional Models for the Dempster-Shafer Theory of Belief Functions

Radim Jiroušek, Václav Kratochvíl and Prakash P. Shenoy

ÚTIA, Czech Academy of Sciences

Prague University of Economics and Business

University of Kansas

Dempster's combination

using commonality functions for distinct BPAs:

 $Q_{m_1 \oplus m_2}(\mathbf{a}) = \frac{1}{K} Q_{m_1}(\mathbf{a}^{\downarrow r}) Q_{m_2}(\mathbf{a}^{\downarrow s})$

Directed graphical model

DAG + system of conditional BPAs: $m_{X|Pa(X)}$

 $m = m_B \oplus m_S \oplus m_{O|B} \oplus m_{A|O} \oplus m_{T|A,S} \oplus m_{M|B,T}$ Distinctness is guaranteed by combining "conditionals.": For node X, $m_{\{X\}\cup pa(X)}^{\downarrow Pa(X)}$ is vacuous.

Dempster's decombination

The inverse of Dempster's combination, using commonality functions:

$$(Q_{m \ominus m^{\downarrow s}})(\mathbf{a}) = \begin{cases} \frac{1}{L} \frac{Q_m(\mathbf{a})}{Q_{m^{\downarrow s}}(\mathbf{a}^{\downarrow s})} & \text{if } Q_{m^{\downarrow s}}(\mathbf{a}) > 0\\ \frac{1}{2} \frac{1}{2} \frac{Q_m(\mathbf{a})}{Q_{m^{\downarrow s}}(\mathbf{a}^{\downarrow s})} & \text{otherwise} \end{cases}$$

d-composition

$$m_1 \triangleright_d m_2 = m_1 \oplus (m_2 \ominus m_2^{\downarrow r \cap s})$$

Compositional models

f-composition

Consider BPAs m_1 for r and m_2 for s. Their f-composition is a BPA $m_1 \triangleright_f m_2$ defined for each nonempty $a \subseteq \Omega_{r \cup s}$ by one of the following expressions:

(i) if
$$m_2^{\downarrow r \cap s}(a^{\downarrow r \cap s}) > 0$$
 and $a = a^{\downarrow r} \bowtie a^{\downarrow s}$, then
 $(m_1 \triangleright_f m_2)(a) = \frac{m_1(a^{\downarrow r}) \cdot m_2(a^{\downarrow s})}{m_2^{\downarrow r \cap s}(a^{\downarrow r \cap s})};$
(ii) if $m_2^{\downarrow r \cap s}(a^{\downarrow r \cap s}) = 0$ and $a = a^{\downarrow r} \times \Omega_{s \setminus r}$, then
 $(m_1 \triangleright_f m_2)(a) = m_1(a^{\downarrow r});$
(iii) in all other cases, $(m_1 \triangleright_f m_2)(a) = 0.$

f-composition is always defined

Undirected graph G + system of BPAs: $m_{\mathcal{C}}$ for all cliques \mathcal{C} of G connected using \triangleright_d or \triangleright_f

$$\begin{split} m &= m_B \oplus m_S \oplus m_{O|B} \oplus m_{A|O} \oplus m_{T|A,S} \oplus m_{M|B,T} \\ &= m_B \triangleright_d m_S \triangleright_d m_{O|B} \triangleright_d m_{A|O} \triangleright_d m_{T|A,S} \triangleright_d m_{M|B,T} \\ &= m^{\downarrow B} \triangleright_d m^{\downarrow S} \triangleright_d m^{\downarrow O,B} \triangleright_d m^{\downarrow A,O} \triangleright_d m^{\downarrow T,A,S} \triangleright_d m^{\downarrow M,B,T} \end{split}$$

Open problems

- Computational problems of \triangleright_d . Is there a way to compute $m \ominus m^{\downarrow s}$ for some (non-trivial) class of BPAs avoiding the transformation of m into CF?
- Dempster's decombination is not unique. E.g. for BPA m, for which \oplus is idempotent ($m \oplus m = m$) also $m \oplus \iota_m = m$. - $m \ominus m^{\downarrow s}$ is often pseudo-BPA:
- There is a necessary and sufficient condition for $m_1 \triangleright_d m_2 = m_1 \triangleright_f m_2$ if the respective conditional $m_2 \ominus m_2^{\downarrow r \cap s}$ is non-negative.
- If d-composition is defined, then it is more specific than f-composition: Bel(m₁ ▷_d m₂) ≥ Bel(m₁ ▷_f m₂).
 f-composition can approximate the d-composition when it is undefined.
- How to recognize when $m_1 \triangleright_d m_2$ is a non-negative BPA?
- Do there exist some necessary and sufficient condition for $m_1 \triangleright_d m_2 = m_1 \triangleright_f m_2$ even when the respective conditional $m_2 \ominus m_2^{\downarrow r \cap s}$ is not non-negative.
- How to create conditional BPAs? Is there a possibility to computing conditional when $m\ominus m^{\downarrow s}$ is pseudo-BPAs