Evaluating Imprecise Forecasts

Jason Konek
University of Bristol

EPIMP

Keywords: Scoring rules, loss functions, forecasting, lower previsions, sets of almost desirable gambles

Background

$\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a finite possibility space
\mathcal{F} is the power set of Ω. Elements E of \mathcal{F} are events.
Experts announce probabilistic forecasts for events.
\qquad

-	0700	0.40	07700	1000	1300	1600
Tue	Wed	Thu	${ }_{\text {Fif }}$	Sat	Sun	Mon
,	R	F-	2	1,4	"1-	!/'
$16^{6} 12$	$19^{13} 13^{\circ}$	22^{20}	${ }^{27} 1^{18}$	$24^{1 / 4}$	${ }_{22} 2^{140}$	${ }^{22}$

Forecasts are accurate insofar as they are "close" to the indicators of the events being forecast.

- If it does not rain on Wednesday or Thursday, then Wednesday's forecast (0.03) is more accurate (closer to 0) than Thursday's (0.14) $c: \mathcal{F} \rightarrow \mathbb{R}$ is an assignment of precise forecasts
to events in $\mathcal{F} . \mathcal{C}$ is the space of all such assignments.

Evaluate assignments of precise forecasts by a scoring rule or loss function $\mathcal{I}: \mathcal{C} \times \Omega \rightarrow \mathbb{R}_{\geq 0}$. A scoring rule $\mathcal{I}: \mathcal{C} \times \Omega \rightarrow \mathbb{R}_{\geq 0}$ is strictly proper

$$
\sum_{\omega \in \Omega} p(\omega) \mathcal{I}(p, \omega)<\sum_{\omega \in \Omega} p(\omega) \mathcal{I}(c, \omega)
$$

for any probability function $p \in \mathcal{C}$ and any $c \neq p$

- Brier Score: $\mathcal{I}(c, \omega)=\sum_{X \in \mathcal{F}}\left(\mathbb{1}_{X}(\omega)-c(X)\right)^{2}$
- Log Score:

$$
\mathcal{I}(c, \omega)=\sum_{X \in \mathcal{F}}-\log \left(\left|1-\mathbb{1}_{X}(\omega)-c(X)\right|\right)
$$

- Spherical Score:
$\mathcal{I}(c, \omega)=\sum_{X \in \mathcal{F}}\left(1-\frac{\left|1-\mathbb{1}_{X}(\omega)-c(X)\right|}{\sqrt{c(X)^{2}+(1-c(X))^{2}}}\right)$

Strictly proper scoring rules: admissibility

An assignment of forecasts $c: \mathcal{F} \rightarrow \mathbb{R}$ is admissible relative to a scoring rule \mathcal{I} if and only if it is not incoherent $_{2}$ [de Finetti, 1974, ch. 3], i.e., it is not (uniformly) dominated by some $b \neq c$ in the sense that $\mathcal{I}(b, \omega)<\mathcal{I}(c, \omega)$
for all $\omega \in \Omega$.
Let x be a precise forecast for event E and y be a precise forecast for $\neg E$. The following is a straightforward consequence of [Lindley, 1982, Lemma 2]:

Corollary

If $\mathcal{I}_{0}(x, y)=s_{0}(x)+s_{1}(y)$ and $\mathcal{I}_{1}(x, y)=s_{1}(x)+s_{0}(y)$ is a continuously differentiable strictly proper scoring rule, then following three conditions are equivalent: - There are $a, b \in \mathbb{R}$ s.t.
$\nabla_{\langle a, b\rangle} \mathcal{I}_{0}(x, y)<0$
$\nabla_{\langle a, b\rangle} \mathcal{I}_{\mathbf{I}}(x, y)<0$
(-) $0 \notin \operatorname{posi}\left(\left\{\nabla \mathcal{I}_{0}(x, y), \nabla \mathcal{I}_{1}(x, y)\right\}\right)$

- $y \neq 1-x$

Conclusion: A pair of forecasts, x and y, for E and $\neg E$ respectively, are admissible if and only if probabilistic.

Sets of almost desirable gambles

A gamble $g: \Omega \rightarrow \mathbb{R}$ is an uncertain reward which pays out in linear utility. We will treat them as elements $g=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ of \mathbb{R}^{n}.

A set $\mathcal{D} \subseteq \mathbb{R}^{n}$ is a coherent set of almost desirable gambles iff it satisfies:

AD1. If $g<0$ then $g \notin \mathcal{D}$ (where $g<0 \Leftrightarrow g_{i}<0$ for The epigraph of a function $b: \mathbb{R}^{n-1} \rightarrow[-\infty, \infty]$ all $i \leq n$)
AD2. If $g \geq 0$ then $g \in \mathcal{D}$ (where $g \geq 0 \Leftrightarrow g_{i} \geq 0$ for $\quad \mathcal{D}_{b}=\left\{\left\langle g_{1}, \ldots, g_{n}\right\rangle \mid g_{n} \geq b\left(g_{1}, \ldots, g_{n-1}\right)\right\} \subseteq \mathbb{R}^{n}$ all $i \leq n$)
AD3. If $g \in \mathcal{D}$ and $\lambda>0$ then $\lambda g \in \mathcal{D}$
AD4. If $f, g \in \mathcal{D}$ then $f+g \in \mathcal{D}$
AD5. If $g+\epsilon \in \mathcal{D}$ for all $\epsilon>0$ then $g \in \mathcal{D}$

Challenges

- Suppose that for all $i \leq n, \phi_{i}$ satisfies $\mathrm{Pl}, \mathrm{P} 2$ and super-additivity: $\phi_{i}(f+g) \geq \phi_{i}(f)+\phi_{i}(g)$, for all $f, g \in \mathbb{R}^{n}$.
Super-additivity is useful for ensuring that admissible \mathcal{D} satisfy AD4
- Triviality Result (Van Camp): ϕ_{i} satisfies P1, P2 and super-additivity for all $i \leq n$ if and only if ϕ_{i} is represented by a function $\gamma_{i}: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies Properties P1, P2 and super-additivity, in the sense that $\phi_{i}(g)=\gamma_{i}\left(g_{i}\right)$ for every $g \in \mathbb{R}^{n}$.
- Only sufficient to render a slightly generalised class of \mathcal{D}_{f} from example 2 admissible.

References

Bruno de Finetti. Theory of Probability: A Critical Introduc- International Statistical Review, 50:1-26, 1982. tory Treatment, volume 1. John Wiley \& Sons, Chichester, 1974. Mark J. Schervish, Teddy Seidenfeld, and Joseph B. English translation of De Finetti (1970). Kadane. Infinite previsions and finitely additive expectations.

Scoring imprecise forecasts

The ideal set of almost desirable gambles if ω_{i} is the true state of the world is given by

$$
\mathcal{D}_{i}=\left\{g \mid g_{i} \geq 0\right\} \subseteq \mathbb{R}^{n}
$$

\mathcal{D}_{i} contains all and only the gambles that are in fact almost desirable at ω_{i}.

Choose an epigraphical set $\mathcal{D} \subseteq \mathbb{R}^{n}$ of almost desirable gambles (coherent or not).
$\mathcal{E}_{j}^{\underline{1}}=\mathcal{D} \backslash \mathcal{D}_{i}$ is \mathcal{D} 's set of type 1 errors at ω_{j}.
$\mathcal{E}_{i}^{2}=\mathcal{D}_{i} \backslash \mathcal{D}$ is \mathcal{D} 's set of type 2 errors at ω_{i}

Type I and type II error for world ω_{1}
$\mathcal{E}_{i}=\mathcal{E}^{l} \backslash \mathcal{E}_{i}^{2}$ is \mathcal{D}^{\prime} 's error set at ω_{i}-the total set of gambles that \mathcal{D} mischaracterizes at ω_{j}.

Inaccuracy is a measure of error
The inaccuracy of \mathcal{D} at $\omega_{i}, \mathcal{I}\left(\mathcal{D}, \omega_{i}\right)$, is the measure of \mathcal{E}_{i} according to an appropriate measure ν_{i} :

$$
\mathcal{I}\left(\mathcal{D}, \omega_{i}\right)=\mathcal{I}_{i}(\mathcal{D})=\nu_{i}\left(\mathcal{E}_{i}\right)
$$

- $\nu_{i}\left(\mathcal{E}_{i}\right)$ is something like the "size" of the error set \mathcal{E}_{i}. Assume that ν_{i} is finite and absolutely continuous with respect to the product Lebesgue measure μ. In that case

$$
\mathcal{I}_{i}(\mathcal{D})=\int_{\mathcal{E}_{i}}\left|\phi_{i}\right| \mathrm{d} \mu
$$

Axiomatic constraints:

P1. $\phi_{i}\left(g_{1}, \ldots, g_{n}\right)$ is (at least weakly) increasing in g_{i}
P2. $\phi_{i}\left(g_{1}, \ldots, g_{i-1}, 0, g_{i+1}, \ldots, g_{n}\right)=0$

- Accepting a bigger loss is a bigger type 1 error

Leaving more utility on the table is a bigger type 2 error.

Linear previsions and non-additivity

Precision-inducing constraints:
SPl. $\phi_{i}(\lambda g)=\lambda \phi_{i}(g)$ for any $\lambda>0$
2. $\nu_{i}\left(\mathcal{E}_{i}\right)=\nu_{i}\left(\mathcal{E}_{i}^{*}\right)$ for any \mathcal{E}_{i}^{*} s.t.
$\mathcal{E}_{i}^{*}=\left\{\left\langle x_{1}, \ldots, x_{i-i}, g_{i}, x_{i+1}, \ldots, x_{n}\right\rangle \mid g \in \mathcal{E}_{i}, x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}$
SP3. $\nu_{i}\left(\mathcal{E}_{i}\right)=\nu_{j}\left(\mathcal{E}_{j}^{\dagger}\right)$ where $\mathcal{E}_{j}^{\dagger}$ is the result of permuting
the $i^{\text {th }}$ and $j^{\text {th }}$ component of any $g \in \mathcal{E}$, i.e.,
$\mathcal{E}_{j}^{\dagger}=\left\{g^{\dagger} \mid g \in \mathcal{E}_{i}, g_{i}^{\dagger}=g_{j}, g_{j}^{\dagger}=g_{i}, g_{k}^{\dagger}=g_{k}\right.$ for all $\left.k \neq i, j\right\}$

Theorem

Example 1. Let $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and let \mathcal{P} be the set of all probability mass functions of Ω. Choose $p=\left\langle p_{1}, p_{2}, p_{3}\right\rangle \in \mathcal{P}$. Let ρ be the normal distribution on the Borel σ-algebra $\mathfrak{B}(\mathbb{R})$ with mean 0 and standard deviation 5 . Let μ be the product measure $\rho \times \rho \times \rho$ on $\mathfrak{B}\left(\mathbb{R}^{3}\right)$. In that case

This is a non-additive analogue of the Spherical

If \mathcal{I} satisfies PI-P2 and SPI-SP3, then there is some
$c>0$ such that for all $i \leq n$

$$
\mathcal{I}_{i}(\mathcal{D})=\int_{\mathcal{E}_{i}}\left|c g_{i}\right| \mathrm{d} \mu
$$

In that case, for any probability mass function
$p: \Omega \rightarrow \mathbb{R}$ and any $\mathcal{D} \neq \mathcal{D}_{p}$

$$
\sum_{i \leq n} p_{i} \mathcal{I}_{i}\left(\mathcal{D}_{p}\right)<\sum_{i \leq n} p_{i} \mathcal{I}_{i}(\mathcal{D})
$$

unless both $\mathcal{D} \backslash \mathcal{D}_{p}$ and $\mathcal{D}_{p} \backslash \mathcal{D}$ are sets of measure zero.
$\mathcal{I}_{1}\left(\mathcal{D}_{p}\right)$ as a function of p_{1} (x -axis) and p_{2} (y -axis). An alternative to the strictly proper additive scoring rules for linear previsions considered by Schervish et al. [2013].

IP scoring rules: admissibility

Theorem

If ν_{i} is finite and absolutely continuous with respect to μ, for all $i \leq n$, then the following two conditions are equivalent: - There is some $h: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ s.t. for all $i \leq n$
$\delta \mathcal{I}_{i}(b, h)=\int_{\mathbb{R}^{n-1}} \frac{\partial \mathcal{I}_{i}}{\partial b} h \mathrm{~d} \lambda=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\mathcal{I}_{i}(b+\epsilon h)-\mathcal{I}_{i}(b)\right]<0$
First variation-calculus of variations analogue of
directional derivative
(0) $0 \notin \operatorname{posi}\left(\left\{\phi_{i}(\cdot, b(\cdot)) \mid i \leq n\right\}\right)$

Example 2. Suppose that $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and that for some $\lambda \geq \gamma>0$:

$$
\phi_{i}\left(g_{1}, g_{2}, g_{3}\right)=\left\{\begin{array}{l}
\lambda g_{i} \text { if } g_{i}<0 \\
\gamma g_{i} \text { if } g_{i} \geq 0
\end{array}\right.
$$

Then $0 \in \operatorname{posi}\left(\left\{\phi_{i}(\cdot, b(\cdot)) \mid i \leq 3\right\}\right)$ iff there are $\alpha, \beta \geq 0$ s.t

$-\gamma\left(\alpha g_{1}+\beta g_{2}\right) \quad$ if $g_{1} \geq 0, g_{2} \geq 0$

 $\frac{-\lambda\left(\alpha g_{1}+\beta g_{2}\right)}{\gamma}$ if $g_{1}<0, g_{2}<0$$b\left(g_{1}, g_{2}\right)=$
$\frac{-\left(\alpha \lambda g_{1}+\beta \gamma g_{2}\right)}{\gamma}$ if $g_{1}<0, g_{2} \geq 0, \alpha \lambda g_{1}+\beta \gamma g_{2}<0$
$\frac{-\left(\alpha \lambda g_{1}+\beta \gamma g_{2}\right)}{\lambda}$ if $g_{1}<0, g_{2} \geq 0, \alpha \lambda g_{1}+\beta \gamma g_{2} \geq 0$
$\frac{-\left(\alpha \gamma g_{1}+\beta \lambda g_{2}\right)}{\gamma}$ if $g_{1} \geq 0, g_{2}<0, \alpha \gamma g_{1}+\beta \lambda g_{2}<0$
$\frac{-\left(\alpha \gamma g_{1}+\beta \lambda g_{2}\right)}{\lambda}$ otherwise
It is easy to verify that \mathcal{D}_{b} is coherent. Only coherent \mathcal{D}_{b} of this form are admissible relative to \mathcal{I}.

