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Problem Statement

Computing 3D models from pairs of images by means of stereo-matching is a complex problem. The crucial part consists in matching two pixels using a similarity function. How can we
propagate the uncertainty to the similarity score when the uncertainty on pixel intensities is modeled by a possibility distribution, and the dependence between variables is a known copula?

Similarity Function Copulas
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A copula is a mapping C : [0, 1]n → [0, 1]
which can model any dependency between n
Cumulative Distribution Functions.
Sklar’s theorem [1] states that any multivari-
ate CDF G can be expressed using a unique
copula C and its marginals Fi:

G(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

Conversely, any copula applied to n univari-
ate CDFs correctly defines a n-dimension
CDF.

Necessity Functions as Marginals

Because of sampling and digitization, the uncertainty regarding a pixel
value is modeled by a possibility distribution centered around the
observed value I . Possibility distributions define special types of belief
functions called Necessity functions : Nec(A) = 1− supx∈Ac π(x)
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Joining Belief Functions using Copulas

One way of aggregating Belief functions using a copula
is by joining the masses of marginal belief functions
using the H-volume of the copula [2]. In the bivariate
case, writing AI =

∑I
1 mX(ai) and BJ =

∑J
1 mX(bj),

the H-volume is computed as follows:

mXY (aI, bJ) = C(AI, BJ) + C(AI−1, BJ−1)

− C(AI−1, BJ)− C(AI, BJ−1)

The resulting mass function of a variable Z = f (X, Y )
is then:

mZ(z) =
∑
aI,bJ

f (aI,bJ)=z

mXY (aI, bJ)

and thus BelZ(Z) =
∑

z⊆Z mZ(z).

Faster computations

Here, the possibility distributions are symmetric, uni-
modal, and the similarity function can be monotone.
It can be shown that in this case, joining Necessity
functions with a Copula and propagating it using the

function f yields a Necessity function. Adding to this
the fact that NecXY = C(NecX, NecY ) allows to eas-
ily compute the propagated focal sets and their bounds
without computing the H-volume.

Computed Belief function
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Monte Carlo Sampling

Conclusion and Perspectives

• Copulas can be used to correctly propagate possibilities
• Computation can be reduced for symmetric possibility distributions
• This leads to a choice under uncertainty problem
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