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Bayesian Neural Networks (BNNs)

Fundamentals
BNNs employ a probabilisitc approach to Neural Networks (NNs) by leveraging Bayes´ Theorem
and specifying a distribution over the weights of a NN.

P (θ|X, y) = P (y|X, θ)× P (θ)

P (y|X)

For parameters θ = (w, b), where w represents the weights of the network and b denotes the
biases, and the data X and y, where X represents the covariates and y represents the target,
respectively, [7].

Algorithm 1 Inference procedure in a BNN

1: Define p(θ|X, y) = p(y|X,θ)p(/theta)
p(y|X)

2: for i = 0 to N do
3: Draw θi ∼ p(θ|X, y)
4: yi = Φθi(x)
5: end for
6: return Y = {yi|i ∈ {0, · · · , N}}, Θ = {θi|i ∈ {0, . . . , N})}

By adopting a probabilistic approach, each feed-forward step is coupled with draws of the weights
from the posterior w ∼ P (θ|X, y) which allows modelling uncertainty, expressed by the trust in
the posterior parameter V ar(θ|X, y). Higher posterior-variances result in an increased variation
in the drawn weights, leading to a greater variation in the network´s output. This type of
uncertainty is commonly referred to as epistemic uncertainty, [6].

Variational Inference
An common approach to handle the posterior distribution is the usage of approximation-based
procedures like Variational Inference (VI).
Here, the posterior is approximated by a variational posterior qψ(θ), parameterized by ψ. For
that, KL-Divergence is used:

KL(qψ(θ)||p(θ|X, y)) = KL(qψ(θ)||p(θ))− Eqψ(θ)(log(p(y|X, θ) + log(p(y|X))))

Since the KL-Divergence is always ≥ 0 and the logarithmic evidence log(p(y|X)) is independent
of θ, the first part of the equation, J(θ) = KL(qψ(θ)||p(θ))−Eqψ(θ)(log(p(y|X, θ) is used as the

optimization objective. J(θ) is commonly referred to as Evidence-Lower-Bound (ELBO), [7], [4].
In case of mini-batches, where parameters are updated after each batch gradient calculation, the
KL-Divergence is scaled, [5]

J(θ)(i) =
1

M
KL(qψ(θ)||p(θ))− Eqψ(θ)(log(p(y|X, θ)

for i ∈ {1, . . . ,M} where M is the number of equally-sized batches, [5].

Outlook: How Credal Sets Could Help

Motivation: Credal Sets have proven very fruitful for uncertainty quantification in situations
involving prior-data conflicts [2, 10], when classical (precise) models fail to capture the uncertainty.
Our analysis [9] suggests that this might be transferrable to BNNs, as their uncertainty estimates
were insensitive to prior-data conflict.

Imprecise Bayesian Neural Networks [3]: Very recently, [3] proposed to equip BNNs with a
finite set of priors and update each of them. They then compute α-level Imprecise Highest Density
Region (IHDR) IRα := ∪Kk=1R

(
p̂αk

)
as union of classical HDRs R

(
p̂αk

)
:=

{
y : p̂k(y) ≥ p̂αk

}
,

where α ∈ (0, 1) and p̂αk is the largest constant such that P̂k
[
Y ∈ R

(
p̂αk

)]
≥ 1 − α with

k ∈ {1, . . . , K} the number of priors.

Adaption to our setup: We adopted a minimalistic approach from [3] where we defined two
priors. These priors were updated using the same likelihood, resulting in two distrinct posteriors.
Subsequently, we calculated the α-level HDR for each model individually (Figure 1: left) and
then combined them to obtain an α-level IHDR (Figure 1: right).

Figure 1: Left: Individual HDRs of both models, with and without prior-data conflict. Right: Combined HDR of
both models, where we used the union of both HDRs to model an IHDR.

Figure 1 illustrates that in regions where both models exhibit agreement, uncertainty predictions
are tighter. However, in regions where the two models do not align, the IHDR reports a bigger
width, indicating a higher level of uncertainty, indeed.
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Experimental Setup

Motivation: In standard BNNs, it is common to assume a prior distribution of N(0, αI) for the weights [7].
This choice is due to the fact that there is a lack of reasonable a priori assumptions about the true values of
the weights, thereby resulting in potential prior-data conflicts. To evaluate the extent to which these conflicts
influence the results in BNNs, we conducted our analysis.
In our study [9] we focused on analyzing the epistemic uncertainty, specifically assuming that σ2 is known
and constant.

Setup: To analyze the impact of prior-data conflicts we constructed a synthetic dataset with the following
functional relationship

yi =
cos(xi)

|xi| + 1
+ 100 + ϵi.

Here, ϵi ∼ N(0, 0.25). This dataset was used to train a traditional neural network, comprising three input
neurons, two hidden layers with 100 neurons each, and an output layer with a single neuron. ReLU Activation
was applied between the hidden layers. The weights of this traditional neural network were then employed
to generate a new dataset:

ỹi = f (xi) + ϵ̃i

with ϵi ∼ N(0, 0.01). This dataset possesses two important characteristics: firstly, the true functional
relationship is known (i.e., a neural network with four layers and ReLU Activations), which minimizes model
uncertainty [6]; and secondly, the true values (i.e., the weights) are known a priori.

Figure 2: Illustration of the three stages involved in generating the synthetic dataset. Left: The initial dataset to train a traditional
neural network. Middle: Visualization of the weights in the traditional neural network. Each layer exhibits values that are
significantly different from 0. The figures are paired, representing the weights of neurons and biases from one layer to the next.
Right: The generated dataset, utilizing the traditional neural network as ground truth.

Structural Assumptions:

• Model posterior distributions for θ = (w, b): q(θ
(l)
i |µli, σ

(l)
i ) where θ

(l)
i is the i-th weight in the l-th layer

• Assume a factorizable multivariate gaussian q(θ(l)|µ(l), σ(l)2) =
∏nl
i=1 q(θi|µ

(l)
i , σ

(l)2

i ) where nl denotes
the number of weights in the l-th layer

• Assume a gaussian likelihood: ỹi|Xi ∼ N(f (Xi|θ), 0.01)

• Assume a N(0, I) prior for θ implying a prior-data conflict and N(w
(l)
trad, I) as reference prior with the

exact weights known from the NN

Training: We used a batch size of 1.000 samples, with a total of 30.000 observations. Given that we
trained approcimately 21.000 parameters, having 30.000 observations seemed reasonable to ensure that the
prior choice still influences the inference process. Furthermore, we scaled the KL-Divergence between the
variational posterior and the prior by 1

30, as advocated by [5].
Scaling the KL-Divergence has the following implications:

• Using a high scaling-factor (e.g. 1
#batches, as in [5]) gives a greater importance towards the complexity

cost

• Using a low scaling factor (e.g. 1
#total observations) prioritizes the likelihood

Lastly, we employed the Reparametrization Trick, [8], which is the standard procedure for backpropagation
in Tensorflow, [1].

Results

Inference: The following figures depict the MC samples from the BNNs. We utilized two different priors –
one centered around the true values and another centered around 0.

Figure 3: Left: The predictions of the reference BNN which employs priors centered around the true values known from the NN.
Right: The predictions of the BNN with a prior centered around 0.

Looking at the posterior variance yields similar results, independently from the prior choice.

Figure 4: Left: Distribution of the posterior variance V ar(θ|X, y) for the model without prior-data conflict for each layer. Right:
Distribution of the posterior variance for the model with prior-data conflict.

Summary: The results depicted in Figure 3 highlight that BNNs with prior-data conflict struggle to capture
the underlying structure, while BNNs with the correct prior demonstrate a good fit to the data, despite the
limited number of observations. This finding contrasts with the estimated posterior variances, as shown in
Figure 4, where both models exhibit similar uncertainty estimations. Apparently, the BNNs are not able
to adequately represent the uncertainty induced by the prior-data conflict in our simulation.
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