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Problem
• Common problem on machine learning predictions: poor calibration.

• Calibration definition: The probability P̂ given by a model h for a class w and input x
is the true probability, i.e, P(y = w |h(x) = P̂ ) = P̂ .

• Inductive Conformal Prediction (ICP) [1] is a possible solution to this problem.

• What is the relation (if any) between ICPs and Imprecise Probabilities?
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P̂ (Y |X ) ̸= P (Y |X )

Possibility theory

• It is proven that ICP output p is equal to a possibility distribution π :Ω 7→ [0,1].

• We want to normalize π such that maxπ∗= 1 where π∗ is the normalized distribution.

• Limitation: we can only extract imprecise probabilities from a possibility distribution.

• Normalisation: Ours (π∗(w∗) = 1,π∗(w) =π(w), w∗= argmax(π(w)) for all w ̸= w∗),
Dempster’s or Yager’s?

• We can build a Belief function Bel (B) with a Necessity Measure N such that Bel (B) :=
N (B) = 1−maxx∈¬B π(x),B ⊆Ω.

• In the example below, we can compute the Belief functions as Bel ({w1}) =
1 − maxw∈{w2,w3,w4}π

∗(w) = 0.5, Bel ({w1, w2}) = 1 − maxw∈{w3,w4}π
∗(w) = 0.625,

Bel ({w1, w2, w3}) = 1−maxw∈{w4}π
∗(w) = 0.875, and so on.
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Inductive Conformal Prediction
• Assumes the dataset Z = {(xi , wi ), wi ∈Ω|i = 1, . . . ,n} is exchangeable.

• Compute non-conformity scores βi .

• Computes p-values, ICP output, by comparing the non-conformity scores of a single
example and the ones of the calibration set.

• In the example below, w1 is the best prediction because pw1
has the highest value

among all (βw1
is the smallest).
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• P-values property: P ({p(wi ) ≥ δ}) ≥ 1−δ, wi ∈ Ω,δi n(0,1). We have thus Conformal
Regions:Γδ(x) = {

w j :πx(w j ) ≥ δ
}

(see example below).

• Advantages: Simple to implement/understand and with a rigorous theory behind it.

• Drawbacks: Calibration set (needs more data) and a bit slower.
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Our solution
• Our hypothesis: ICP outputs can be learned directly from a machine learning model.

• We need p-values as labels, which doesn’t exist in any public datasets.

• We train a model that estimates probability distributions and then we apply the ICP
on this model output to compute p-values.

• This p-values are the labels to train a regressor.

• P-value vector p can be interpreted as a possibility distribution π.

• Estimation of calibrated belief functions via possibility distribution.
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Experiments

• Classifier: EfficientNet [3] or Logistic Regres-
sion depending on the dataset.

• Regressor: EfficientNet feature extractor + 4 lin-
ear layers or Random Forest depending on the
dataset.

data set
# training
instances

# test
instances

Input
Shape

# classes

Digits 1437 360 (8,8,1) 10
Heart disease 771 147 (9,1) 2

Titanic 748 143 (7,1) 2
Symptom2Disease 960 240 (384,1) 24

SVHN 1437 360 (32,32,3) 10
Cifar10 50,000 10,000 (32,32,3) 10

Cifar100 50,000 10,000 (32,32,3) 100
Artists 6700 1676 (512,512,3) 50

P-values comparison

• Comparison between ICP and the regressor outputs.

• Calibration dataset = 10% of the train dataset.

• The Mean Square Root(MSR) and the R2 coefficient are
presented on table.

data set Classifier Regressor
Classifier
accuracy

RMSR (10−3) R2 coeff.

Digits
logistic

regression
random forest

96 3.6 0.84
Heart 82 3.6 0.96

Titanic 80 0.9 0.99
Symptom2Disease 96 7 0.83

SVHN

EfficientNet.v2
feature extractor +

4 dense linear layers

94 0.03 0.99
Cifar10 85 0.34 0.98

Cifar100 62 9.80 0.17
Artists 89 0.80 0.78

Calibration curves
• Check whether calibration properties are maintained.

• Regressor does not scale well with the number of classes.
Cifar 10 Cifar100
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Conclusion
• Calibration techniques make model predictions statistically valid.

• The ICP is a popular calibration technique but it is slower and requires more data.

• Our algorithm decrease the dependence of ICP on the calibration dataset while also being less
computationally expensive and having similar performance.

• However, it still requires a minimum amount of data and takes more time to learn.

• Future works may solve this problem using co-learning techniques [4] [2].
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