Ongoing Research about a Particular Case of Sets of Desirable Gambles $\{1,2,3]$
Research supported under project PID2019.106758GB.C31 funded by Research supported under project PI
1.- Basic Concepts

Definition
A gamble g is said to express a pairwise desirability if and only if it can be expressed as $g=I_{x}-\left.b\right|_{y}$, where $b>0$ and $x, y \in X$.
Definition
An initial specification of pairwise desirable gambles is a mapping $t: X \times X \rightarrow \mathbb{R} \cup \mathbb{R}^{-} \cup\{+\infty\}$, where $\mathbb{R}^{-}=\left\{a^{-}: a \in \mathbb{R}\right\}$, and $t(x, x)=1^{-}$

For any $a, b \in \mathbb{R}$, with $a<b$, we have

$a^{-}<a<b^{-}<b<+\infty$. Intuitively, a^{-}is a number just before a (to leave open a set of gambles.
Definition
Given initial specification t, the associated set of gambles is:
$\mathcal{T}=\left\{I_{x}-b I_{y}: b \in \mathbb{R}, 0<b \leq t(x, y)\right\}$

- If $t(x, y)=0$, no gamble $I_{x}-b l_{y}$, with $b>0$ is initially desirable;
- if $\mathrm{f} t(x, y)=+\infty$, any gamble $I_{x}-b l_{y}$, with $b>0$ is desirable;
- if $t(x, y)=a$, then any gamble $I_{x}-b l_{y}$ with $b \in(0, a]$ is desirable;
- if $t(x, y)=a^{-}$, then any gamble $I_{x}-b l_{y}$ with $b \in(0, a)$ is desirable.
Example
Assume that $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and the initial specification given by the following matrix:

$$
T=\left(\begin{array}{ccc}
1^{-} & 0.2 & 0.3 \\
1 & 1^{-} & 0.5 \\
2 & 1 & 1^{-}
\end{array}\right)
$$

We are specifying that $I_{x_{1}}-0.2 I_{x_{2}}, I_{x_{2}}-I_{x_{1}}$ are both desirable.
Graphical Representation
If X has three elements, the associated credal set to a set of pairwise gambles is demilited by lines pasing going from a triangle vertex to the opposite side as:

Figure: The associated credal se

Convolution

If t is a specification and i is a natural number, then, t^{i} is recursively defined:

$$
t^{1}=t, \quad t^{i+1}=\max \left\{t^{i} \circ t, t^{i}\right\}
$$

where $t_{1} \circ t_{2}(x, y)=\sup \left\{t_{1}(x, z) \cdot t_{2}(z, y): z \in X\right\}$
Resul
If $0<b \leq t^{i}(x, y)$, there are $m \leq i$ gambles $I_{x_{1}}-b_{1} I_{y_{1}}, \ldots, I_{x_{m}}-b_{m} I_{y_{m}} \in \mathcal{T}$ and positive numbers $\alpha_{i}, \ldots, \alpha_{b}$ such that

$$
I_{x}-b l_{y} \geq \alpha_{1}\left(I_{x_{1}}-b_{1} I_{y_{1}}\right)+\cdots+\alpha_{m}\left(I_{x_{m}}-b_{m} I_{y_{m}}\right)
$$

Result

$\left\{t^{\prime}\right\}_{i \geq 1} \uparrow \bar{t}$
The natural Extension

Example

Assuming the initial representation of Example 1 matrix T converges in one iteration to its limit:

$$
\bar{T}=\left(\begin{array}{ccc}
1^{-} & 0.3 & 0.3 \\
1 & 1^{-} & 0.5 \\
2 & 1 & 1^{-}
\end{array}\right)
$$

2. Natural Extension

Result

If t is an initial specification, then its associated set of gambles \mathcal{T} avoids sure loss if and only if $\bar{t}(x, x)<$ 1, $\forall x \in X$.

Finite Case

If X is finite, and we consider a weighted graph with a node for each $x \in X$ and a weight $t(x, y)$ for a link from x to y, and define the value of a path as the product of the weights of its links, then $t^{i}(x, y)$ is the maximum weight of the paths going from x to y.

$$
\bar{t}(x, x) \geq 1 \Leftrightarrow t^{n}(x, x) \geq 1
$$

If $\bar{t}(x, x)<1, \forall x$, then $\bar{t}(x, y)=t^{n}(x, y)$.

Result

If t is an initial specification such that $t(x, x)<1$ for any $x \in X$ and $\overline{\mathcal{T}}$ is the natural extension of \mathcal{T}, then a pairwise gamble $I_{x}-b l_{y} \in \overline{\mathcal{T}}$, if and only if $b \leq \bar{t}(x, y)$.

Computing Gambles in the Natural Extension

The problem we consider now is when a generic gamble g is in the natural extension
$P_{g}=\{x \in X: g(x)>0\}, \quad N_{g}=\{x \in X: g(x)<0\}$

This problem can be rephrased as a max flow problem with gain/loss factors [6]. In particular, the problem is as follows:

- There is a source node s and a sink node t.
- There are a node for each $x \in P_{g}$ and a node for each $y \in N_{g}$
- There is a link from s to each node $x \in P_{g}$ with capacity 1 and gain factor of 1 .
- There is a link from each node $y \in N_{g}$ and t with capacity 1 and gain factor of 1 .
- There is a link from each node $x \in P_{g}$ to each node $y \in N_{g}$ with unlimited capacity (it could be set to the value $\sum_{x \in P_{g}} g(x)$ and gain factor of $\bar{t}(x, y)$.

Example

Assume that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and pairwise natural extension given by matrix:

$$
T=\left(\begin{array}{cccc}
1^{-} & 0.3 & 0.3 & 0.1 \\
1 & 1^{-} & 0.5 & 0.2 \\
2 & 1 & 1^{-} & 0.3 \\
1 & 2 & 1 & 1^{-}
\end{array}\right)
$$

The max flow problem associated with gamble $6 I_{x_{1}}$ $5 I_{x_{2}}-0.9 / x_{3}-1.3 I_{x_{4}}$ is represented in the following graph:

g is in the natural extension if and only if there is a flux in which an amount of $\sum_{y \in N_{g}} g(y)$ arrives to t. In that case the coefficient a_{x}, is equal to the flux entering the link from x to y.
A flux as in the figure (where $a-b$ means that a units enter the link and b units arrive to the link end) solves the problem:

It corresponds to the expression:
$6 I_{x_{1}}+5 I_{x_{2}}-0.9 / x_{3}-1.3 I_{x_{4}} \geq$
$\underline{3\left(I_{x_{1}}-0.3 I_{x_{2}}\right)+3\left(I_{x_{1}}-0.1 I_{x_{4}}\right)+5\left(I_{x_{2}}-0.1 I_{x_{4}}\right)}$

3.- Equiprobability

Equiprobability is represented by the initial representation $\bar{t}(x, y)=1$
, $\forall x, y \in X$. A gamble $I_{x}-a l_{y}$, is desirable whenever $0<a<1$.
Result
If X is finite, a gamble g is desirable if and only if such that $\sum_{x \in X} g(x)>0$.

The associated credal set contains only one element: P_{u}, the uniform probability in X.

Result in infinite, a gamble g is desirable when N_{g}

 is finite and there is $H \subseteq P_{g}$ with H finite and $\sum_{x \in\left(H \cup N_{g}\right)} g(x)>0$.
Result

If X is infinite, then credal set associated to \bar{t} is equal to the set of all the finitely additive probability measures in X such that $P(H)=0$ for any $H \subseteq X$ finite.
Result
If H is finite, the conditioning of \bar{t} to H, is the finite uniform.

Discounting

1. If \mathcal{D} is a set of desirable gambles and $\epsilon \in[0,1]$, then the discounting of \mathcal{D} by ϵ is

$$
\mathcal{D}^{\epsilon}=\left\{g-\epsilon \inf (g) I_{N_{g} \cup P_{g}}: g \in \mathcal{D}\right\} \backslash\{0\} .
$$

If \mathcal{M} is the credal set associated with \mathcal{D}, the credal set associated with \mathcal{D}^{ϵ} is
$\mathcal{M}_{\epsilon}=(1-\epsilon) \mathcal{M}+\epsilon \mathcal{M}_{0}=$
$\left\{(1-\epsilon) P+\epsilon Q: P \in M_{\mathcal{D}}, Q \in \mathcal{M}_{0}\right\}$
\mathcal{M}_{0} is the vacuous credal set.
With Pairwise specifications:

$$
t^{\epsilon}(x, y)=t(x, y) \frac{1-\epsilon}{1+\epsilon t(x, y)}, \text { when } x \neq y
$$

However, this is not equivalent to discount the full natural extension.
2. Second discounting:

$$
\mathcal{D}^{\epsilon}=\left\{g-\epsilon(\sup -\inf (g)) I_{N_{g} \cup P_{g}}: g \in \mathcal{D}\right\} \backslash\{0\} .
$$

Associated to distance
$D(p, q)=1 / 2 \sum_{x}|p(x)-q(x)|$
$t^{\epsilon}(x, y)=\max \left\{0, \frac{t(x, y)-\epsilon t(x, y)-\epsilon}{1+\epsilon t(x, y)+\epsilon}\right.$, when $\left.x \neq y\right\}$

Multiplicative Preference Relationships

- A multiplicative preference relationship [4] is a matrix A with values $a_{i, j} \cdot a_{j, i}=1$.
There are several definitions of consistency, but one of them is $a_{i, j} a_{j, k}=a_{i, k}$.
It corresponds to maximal pairwise specifications.
- In [5] generalized to intervals. Consistency:
$\left\{\left(p_{1}, \ldots, p_{n}\right): I_{i, j} \leq p_{i} / p_{j} \leq u_{i, j}, \sum p_{i}=1, p_{i}>0\right\}$
Very similar to a pairwise specification with
$l_{i, j}=t\left(x_{i}, x_{j}\right), u_{i, j}=1 / t\left(x_{j}, x_{i}\right)$

[^0]
[^0]: Inés Couso and Serafín Moral.
 Sets of desirable gambles: conditioning, representation, and precise probabilities Seratín Moral
 Discounting imprecise probabilities.
 In The Mathematics of the Uncertain: A Tribute to Pedro Gil, pages 685-697. Springe
 Serafín Moral.
 Serafin Moral.
 Learning with imprecise probabilities as model selection and averaging.
 Learning with imprecise probabilities as model selection and averaging.
 Thomas L Saaty.
 Fundamentals of decision making and priority theory with the analytic hierarchy
 process.
 RWS publications, 1994.
 Thomas L Saaty and Luis G Vargas
 Uncertainty and rank order in the analytic hierarchy process.
 European Journal of c
 Kevin Daniel Wayne.
 Generalized maximum flow algorithms.

