

Desirable Gambles Based on Pairwise Comparisons

Serafín Moral, smc@decsai.ugr.es

Department of Computer Science and Artificial Intelligence. University of Granada, Spain

ISIPTA '23 July 11-14, 2023, Oviedo

Ongoing Research about a Particular Case of Sets of Desirable Gambles [1, 2, 3]

Research supported under project PID2019.106758GB.C31 funded by MCIN/AEI/ 10.13039/501100011033

1.- Basic Concepts

Definition

A gamble *g* is said to express a pairwise desirability if and only if it can be expressed as $g = I_x - bI_y$, where b > 0 and $x, y \in X$.

Definition

An initial specification of pairwise desirable gambles is a mapping $t : X \times X \to \mathbb{R} \cup \mathbb{R}^- \cup \{+\infty\}$, where $\mathbb{R}^- = \{a^- : a \in \mathbb{R}\}$, and $t(x, x) = 1^-$.

For any $a, b \in \mathbb{R}$, with a < b, we have $a^- < a < b^- < b < +\infty$. Intuitively, a^- is a number just before a (to leave open a set of gambles.

2. Natural Extension

Result

If *t* is an initial specification, then its associated set of gambles \mathcal{T} avoids sure loss if and only if $\overline{t}(x, x) < 1, \forall x \in X$.

Finite Case

If X is finite, and we consider a weighted graph with a node for each $x \in X$ and a weight t(x, y) for a link from x to y, and define the value of a path as the product of the weights of its links, then $t^i(x, y)$ is the maximum weight of the paths going from x to y.

 $\overline{t}(x,x) \ge 1 \Leftrightarrow t^n(x,x) \ge 1$

3.- Equiprobability

Equiprobability is represented by the initial representation $\overline{t}(x, y) = 1^{-}$, , $\forall x, y \in X$. A gamble $I_x - aI_y$, is desirable whenever 0 < a < 1. Result If X is finite, a gamble g is desirable if and only if such that $\sum_{x \in X} g(x) > 0$. The associated credal set contains only one element: P_u , the uniform probability in X. Result If X is infinite, a gamble g is desirable when N_q is finite and there is $H \subseteq P_g$ with H finite and $\sum_{x\in (H\cup N_a)} g(x) > 0.$ Result If X is infinite, then credal set associated to \overline{t} is equal to the set of all the finitely additive probability measures in X such that P(H) = 0 for any $H \subseteq X$ finite.

Definition

Given initial specification *t*, the associated set of gambles is:

 $\mathcal{T} = \{I_x - bI_y : b \in \mathbb{R}, 0 < b \leq t(x, y)\}$ (1)

- ► If t(x, y) = 0, no gamble $I_x bI_y$, with b > 0 is initially desirable;
- ► if $f(x, y) = +\infty$, any gamble $I_x bI_y$, with b > 0 is desirable;
- ▶ if t(x, y) = a, then any gamble $I_x bI_y$ with $b \in (0, a]$ is desirable;
- ▶ if $t(x, y) = a^-$, then any gamble $I_x bI_y$ with $b \in (0, a)$ is desirable.

Example

Assume that $X = \{x_1, x_2, x_3\}$ and the initial specification given by the following matrix:

 $T = \begin{pmatrix} 1^- \ 0.2 \ 0.3 \\ 1 \ 1^- \ 0.5 \\ 2 \ 1 \ 1^- \end{pmatrix}$

If $\overline{t}(x,x) < 1, \forall x$, then $\overline{t}(x,y) = t^n(x,y)$.

Result

If *t* is an initial specification such that t(x, x) < 1 for any $x \in X$ and \overline{T} is the natural extension of T, then a pairwise gamble $I_x - bI_y \in \overline{T}$, if and only if $b \leq \overline{t}(x, y)$.

Computing Gambles in the Natural Extension

The problem we consider now is when a generic gamble g is in the natural extension.

 $P_g = \{x \in X : g(x) > 0\}, \quad N_g = \{x \in X : g(x) < 0\}.$

This problem can be rephrased as a max flow problem with gain/loss factors [6]. In particular, the problem is as follows:

- ► There is a source node *s* and a sink node *t*.
- There are a node for each $x \in P_g$ and a node for each $y \in N_g$
- There is a link from *s* to each node $x \in P_g$ with

Result

If *H* is finite, the conditioning of \overline{t} to *H*, is the finite uniform.

Discounting

1. If \mathcal{D} is a set of desirable gambles and $\epsilon \in [0, 1]$, then the discounting of \mathcal{D} by ϵ is

 $\mathcal{D}^{\epsilon} = \{ \boldsymbol{g} - \epsilon \inf(\boldsymbol{g}) \boldsymbol{I}_{N_g \cup P_g} : \boldsymbol{g} \in \mathcal{D} \} \setminus \{ \boldsymbol{0} \}.$

If \mathcal{M} is the credal set associated with \mathcal{D} , the credal set associated with \mathcal{D}^{ϵ} is $\mathcal{M}_{\epsilon} = (1 - \epsilon)\mathcal{M} + \epsilon \mathcal{M}_{0} =$ $\{(1 - \epsilon)P + \epsilon Q : P \in M_{\mathcal{D}}, Q \in \mathcal{M}_{0}\}$ \mathcal{M}_{0} is the vacuous credal set. With Pairwise specifications:

 $t^{\epsilon}(x,y) = t(x,y) \frac{1-\epsilon}{1+\epsilon t(x,y)}$, when $x \neq y$

We are specifying that $I_{x_1} - 0.2I_{x_2}$, $I_{x_2} - I_{x_1}$ are both desirable.

Graphical Representation

If X has three elements, the associated credal set to a set of pairwise gambles is demilited by lines pasing going from a triangle vertex to the opposite side as:

Figure: The associated credal set

Convolution

If *t* is a specification and *i* is a natural number, then, t^i is recursively defined:

 $t^1 = t, \qquad t^{i+1} = \max\{t^i \circ t, t^i\}$

where $t_1 \circ t_2(x, y) = \sup\{t_1(x, z), t_2(z, y) : z \in X\}$

Result

If $0 < b \leq t'(x, y)$, there are $m \leq i$ gambles

capacity 1 and gain factor of 1.

- ► There is a link from each node $y \in N_g$ and t with capacity 1 and gain factor of 1.
- There is a link from each node $x \in P_g$ to each node $y \in N_g$ with unlimited capacity (it could be set to the value $\sum_{x \in P_g} g(x)$ and gain factor of $\overline{t}(x, y)$.

Example

Assume that $X = \{x_1, x_2, x_3, x_4\}$ and pairwise natural extension given by matrix:

 $T = \begin{pmatrix} 1^{-} \ 0.3 \ 0.3 \ 0.1 \\ 1 \ 1^{-} \ 0.5 \ 0.2 \\ 2 \ 1 \ 1^{-} \ 0.3 \\ 1 \ 2 \ 1 \ 1^{-} \end{pmatrix}$

The max flow problem associated with gamble $6I_{x_1}$ + $5I_{x_2} - 0.9Ix_3 - 1.3I_{x_4}$ is represented in the following graph:

However, this is not equivalent to discount the full natural extension.

2. Second discounting:

 $\mathcal{D}^{\epsilon} = \{ g - \epsilon(\sup - \inf(g)) I_{N_g \cup P_g} : g \in \mathcal{D} \} \setminus \{ 0 \}.$

Associated to distance $D(p,q) = 1/2 \sum_{x} |p(x) - q(x)|$

$$t^{\epsilon}(x, y) = \max\{0, \frac{t(x, y) - \epsilon t(x, y) - \epsilon}{1 + \epsilon t(x, y) + \epsilon}, \text{ when } x \neq y$$

Multiplicative Preference Relationships

- A multiplicative preference relationship [4] is a matrix *A* with values a_{i,j}. a_{j,i} = 1. There are several definitions of consistency, but one of them is a_{i,j}a_{j,k} = a_{i,k}. It corresponds to maximal pairwise specifications.
- ▶ In [5] generalized to intervals. Consistency: $\{(p_1, ..., p_n) : I_{i,j} \le p_i/p_j \le u_{i,j}, \sum p_i = 1, p_i > 0\} \neq \emptyset$

 $I_{x_1} - b_1 I_{y_1}, \ldots, I_{x_m} - b_m I_{y_m} \in \mathcal{T}$ and positive numbers $\alpha_i, \ldots, \alpha_b$ such that

 $I_{x} - bI_{y} \geq \alpha_{1}(I_{x_{1}} - b_{1}I_{y_{1}}) + \cdots + \alpha_{m}(I_{x_{m}} - b_{m}I_{y_{m}})$

Result

$\{t^i\}_{i\geq 1}\uparrow \overline{t}$ The natural Extension

Example

Assuming the initial representation of Example 1, matrix *T* converges in one iteration to its limit:

$$\overline{T} = \begin{pmatrix} 1^{-} \ \mathbf{0.3} \ 0.3 \\ 1 \ 1^{-} \ 0.5 \\ 2 \ 1 \ 1^{-} \end{pmatrix}$$

g is in the natural extension if and only if there is a flux in which an amount of $\sum_{y \in N_g} g(y)$ arrives to *t*. In that case the coefficient $a_{x,}$ is equal to the flux entering the link from *x* to *y*.

A flux as in the figure (where a - b means that a units enter the link and b units arrive to the link end) solves the problem:

It corresponds to the expression: $6 I_{x_1} + 5I_{x_2} - 0.9Ix_3 - 1.3I_{x_4} \ge$ $3(I_{x_1} - 0.3I_{x_2}) + 3(I_{x_1} - 0.1I_{x_4}) + 5(I_{x_2} - 0.1I_{x_4})$

Very similar to a pairwise specification with $I_{i,j} = t(x_i, x_j), u_{i,j} = 1/t(x_j, x_i)$

Inés Couso and Serafín Moral.

Sets of desirable gambles: conditioning, representation, and precise probabilities. *International Journal of Approximate Reasoning*, 52(7):1034–1055, 2011.

Serafín Moral.

Discounting imprecise probabilities.

In *The Mathematics of the Uncertain: A Tribute to Pedro Gil*, pages 685–697. Springer, 2018.

Serafín Moral.

Learning with imprecise probabilities as model selection and averaging. *International Journal of Approximate Reasoning*, 109:111–124, 2019.

Thomas L Saaty.

Fundamentals of decision making and priority theory with the analytic hierarchy process.

- RWS publications, 1994.
- Thomas L Saaty and Luis G Vargas. Uncertainty and rank order in the analytic hierarchy process. European Journal of operational research, 32(1):107–117, 1987.

Kevin Daniel Wayne.
Generalized maximum flow algorithms.
Cornell University, 1999.