
A Bagging method for Cost-sensitive Imprecise Classification

Serafín Moral-García and Joaquín Abellán

University of Granada, Spain

Introduction

Bagging of Imprecise Credal Decision Tree	Weighted Imprecise Credal Decision Tree	
• $n_t =$ number of classifiers considered.	 Weights for the instances depending on the error costs and the Approximate Non-Parametric Predictive Inference Model (A-NPI-M). 	
• For each $i = 1, 2,, n_t$:	 Split criterion in a node: 	
 Select a bootstrapped sample of the original training set with replacement. 	 Probability distribution for the class variable: weighted proportion of instances in the arrangement of maximum entropy with the 	
2. Build a classifier using ICDT and the selected sample as the training set.	of instances in the arrangement of maximum entropy with the A-NPI-M.	
 Predicted set of class values for an instance: Those predicted as 	Information gain based on that probability distribution.	

Predicted set of class values for an instance: Those predicted as

dominated by the minimum number of classifiers.

• Leaf node:

- Probability intervals using the A-NPI-M and instance weights.
- Dominance criterion on such intervals to obtain the predicted set of class values.

UNIVERSIDAD

DE GRANADA

Bagging of Weighted Imprecise Credal Decision Tree

- n_t = number of classifiers considered.
- For each $i = 1, 2, ..., n_t$:
- 1. Select a bootstrapped sample of the original training set with replacement.
- 2. Build a classifier using Weighted-ICDT and the selected sample as the training set.
- Predicted set of class values for an instance: Those close to the minimum dominance level (established threshold).

• Key issues:

Experimental analysis

• Evaluation measure for Imprecise Classifiers (MIC): Costs of misclassifications and number of predicted class values.

Obtained results:

Dataset	Weighted-ICDT	Bagging-Weighted-ICDT
autos	0.9456	1.3085
balance-scale	0.6066	0.5701
car	1.1336	1.1793
CMC	0.0968	0.0854

- Each base classifier takes the misclassification costs into account.
- Informativeness: class values not close to the minimum level of dominance predicted as dominated.
- Error costs of the ensemble: not only the class values with minimum dominance.

dermatology	1.6533	1.7224
iris	0.9592	0.9530
vehicle	0.6155	0.6871
vowel	1.1891	1.5918
wine	0.9308	0.9780
ZOO	1.5987	1.6822

Concluding remarks	Future work
 First ensemble for cost-sensitive Imprecise Classification. Combine predictions: class values close to minimum dominance ⇒ ensemble informative but also considering error costs. Significantly better performance than a single Weighted-ICDT. 	 Other ensemble schemes adapted for cost-sensitive Imprecise Classification. Other techniques of combining multiple imprecise predictions for cost-sensitive scenarios.
 Therefore, our proposed technique suitable for an ensemble for cost-sensitive Imprecise Classification. 	