
Abstract
We explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty
in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measured via Wasserstein distance,
and we investigate to which extent this form of probabilistic imprecision can be parametrized. The aim is to come up with a convex risk functional that
incorporates a safety margin with respect to nonparametric uncertainty and still can be approximated through parametrized models. The particular form of
the parametrization allows us to develop a numerical method, based on neural networks, which gives both the value of the risk functional and the optimal
perturbation of the reference measure.

1. Introduction
Given a random variable Y on a probability
space (Ω,F ,P), taking values in a separable
Hilbert space H, one is usually interested in ex-
pressions of the form

EP
[
f (Y )

]
=

∫
H

f (y) µ(dy),

where f : H → R is a continuous loss (in insur-
ance and actuarial science) or payoff function (in
mathematical finance) and µ = P◦Y−1 is the dis-
tribution of Y .
Lack of data or a reliable calibration procedure
usually leads to uncertainty in the distribution
of the risk factor. We measure this uncertainty
via Wasserstein distance and study the func-
tional

I(h)f := sup
ν∈Pp

( ∫
H

f (z) ν(dz) − φh
(
Wp(µ, ν)

))
,

where
Wp(µ, ν) is the Wasserstein distance of order
p between two probability measures µ and ν;
Pp is the space of probability measures over
H with finite p-th moment;
φ : [0,∞) → [0,∞] is an increasing penaliza-
tion function and, for h > 0, φh(u) = hφ(u/h).

This formulation allows for a general nonpara-
metric uncertainty, considering a very large set
of probability measures, where the measure µ
represents a preferred model. Moreover, the
functional gives structure to the ambiguity set,
penalizing models that are far from the reference
one, and the scaling in the penalization func-
tion allows to control the uncertainty through the
parameter h. Via standard representation theo-
rems, this functional represents a convex risk
measure.
What has to be tackled:

computation of Wasserstein distance;
the problem corresponds to an infinite dimen-
sional optimization.

In the literature on distributionally robust
stochastic optimization similar problems are
tackled via duality methods ([3]). In [1], the au-
thors focus on the coherent case and look for
a linear expansion of the functional around the
central point.

2. First order approximation
We aim for a first order approximation of
the functional I(h) for h > 0, identifying, for
asymptotically small levels of uncertainty, rele-
vant probability measures for the optimization
problem.

2.1. Relevant models

For θ : H → H, we define a shifted version of µ,
µθ ∈ Pp via∫

H
f (z) µθ(dz) :=

∫
H

f
(
y + θ(y)

)
µ(dy).

and, for Θ ⊆ Lp(µ; H),

IΘ(h)f := sup
θ∈Θ

(∫
H

f (y) µθ(dy) − φh
(
∥θ∥Lp(µ;H)

))
.

For p > 1 and for every function f satisfying suit-
able growth conditions ([4]), we show that, if Θ
is dense in Lp(µ; H), then

lim
h↓0

I(h)f − IΘ(h)f
h

= 0.

3. Neural network approxima-
tion
When H = Rd, using universal approximation
theorems (cf. [2]), we can compute the quantity
IΘ(h)f numerically by modeling the parameter
set Θ with neural networks.

3.1. A toy model for an earthquake

We consider a one period model for an earth-
quake where the risk factor is the location of the
epicenter. The loss function is modeled in a way
that damages decrease as the epicenter moves
away from a point of interest, e.g. a city center.

Figure 1: Contour plot of the loss function and vector field θ giving the worst case
measure. The reference measure is a gaussian random variable with mean located
in the red dot.

Using the neural network approach, we obtain
the worst case loss and the worst case mea-
sure, which is given in terms of the optimal shift.

4. Extensions
We can deal with additional constraints on the
set of models that we consider. In particular, we
find approximation results when the measures
in the ambiguity set satisfy a mean or a mar-
tingale constraint with respect to the reference
model.

4.1. Bounds for option pricing

As an application of the martingale constraint,
we compute model free bounds for option
pricing in an arbitrage-free market.

Figure 2: Option: bull spread option with strike long 1 and strike short 1.2. Refer-
ence model: Black-Scholes with S0 = 1, r = 0, and σ = 20%.
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