
Imprecision in Martingale-Theoretic Prequential Randomness

Consider a fair coin—so with probability 1/2 for heads—and
assume that we toss it an infinite number of times. For this
classical set-up, you are familiar with statements as ‘The set
of sequences that satisfy the law of large numbers has mea-
sure one (w.r.t. the obvious induced measure)’. You are
probably less acquainted with examining the properties of a
single sequence that is generated by tossing this coin. In
Algorithmic Randomness, we study what it means for such
infinite sequences to be ‘random’ w.r.t. 1/2. When adopting a
martingale-theoretic approach, a sequence is then basically
considered to be random if you cannot get arbitrarily rich by
betting on the successive outcomes.

Classical martingale-theoretic notions of ran-
domness not only allow for defining an infinite
sequence’s randomness w.r.t. probability 1/2,
but also w.r.t. precise forecasting systems,
which are maps from binary strings to prob-
abilities. However, it is only rather recently that
we succeeded at allowing for interval-valued
forecasting systems in such notions of random-
ness. By doing so, we can test whether an
infinite binary sequence is random w.r.t. a
set of so-called compatible precise forecast-
ing systems.

It is not always natural to define an infinite sequence’s random-
ness w.r.t. an (imprecise) forecasting system. Consider for
example a weather forecaster who provides a daily probability
interval for rain in the next 24 hours. He typically only specifies
forecasts ‘on the fly’, that is, based on the rain history he has
actually observed, and doesn’t provide forecasts for all rain
histories that might have been and might be. As a way out of
this conundrum, we adopt Dawid and Vovk’s prequential fore-
casting framework, which allows us to define what it means
for an infinite sequence (I1,x1, I2,x2, . . . ) of successive rational
interval forecasts Ik and subsequent binary outcomes xk to be
random.

interval forecast(s) I ∈ I := {[p,q] ⊆ [0,1] : p ≤ q ∈ R}
situation(s) w ∈ {0,1}∗ :=

⋃
n∈N0

{0,1}n

path(s) ω ∈ {0,1}N

(rat.) forecasting system ϕ(r) : {0,1}∗ → I(r)

non-degenerate if (∀w ∈ {0,1}∗)ϕ(r)(w) /∈ {0,1}

rat. interval forecast(s) Ir ∈ Ir := {[p,q] ⊆ [0,1] : p ≤ q ∈ Q}
preq. situation(s) (I1,ω1, . . . , In,ωn) ∈ (Ir×{0,1})∗
preq. path(s) (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N

non-degenerate if (∀n ∈ N)In ̸= {1−ωn}

compatible if (∀n ∈ N0)ϕr(ω1, . . . ,ωn) = In+1

Martin-Löf randomness Prequential randomness

Betting strategies
A real-valued map F : (Ir × {0,1})∗ → R is called a
test superfarthingale if F(□) = 1, F(I1,ω1, . . . , In,ωn) ≥
0 and EIr(F(I1,ω1, . . . , In,ωn, Ir, ·)) ≤ F(I1,ω1, . . . , In,ωn) for all
(I1,ω1, . . . , In,ωn) ∈ (Ir×{0,1})∗ and Ir ∈ Ir.

Betting strategies
A real-valued map T : {0,1}∗ → R is called a test supermartin-
gale for a forecasting system ϕ if T (□) = 1, T (w) ≥ 0 and
Eϕ(w)(T (w ·))≤ T (w) for all w ∈ {0,1}∗.

Betting strategies
A real-valued map F : (Ir × {0,1})∗ → R is called a
test superfarthingale if F(□) = 1, F(I1,ω1, . . . , In,ωn) ≥
0 and EIr(F(I1,ω1, . . . , In,ωn, Ir, ·)) ≤ F(I1,ω1, . . . , In,ωn) for all
(I1,ω1, . . . , In,ωn) ∈ (Ir×{0,1})∗ and Ir ∈ Ir.

Definition
We call a sequence (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N of rational
forecasts and outcomes game-random if it’s non-degenerate
and if all lower semicomputable test superfarthingales F sat-
isfy limsupn→+∞ F(I1,ω1, . . . , In,ωn) <+∞.

Definition
A path ω ∈ {0,1}N is Martin-Löf random for a forecasting
system ϕ if limsupn→+∞ T (ω1, . . . ,ωn) < +∞ for all lower semi-
computable test supermartingales T for ϕ.

Definition
We call a sequence (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N of rational
forecasts and outcomes game-random if it’s non-degenerate
and if all lower semicomputable test superfarthingales F sat-
isfy limsupn→+∞ F(I1,ω1, . . . , In,ωn) <+∞.Martin-Löf ⊆ Prequential

Consider any infinite sequence of interval forecasts and
outcomes (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N that’s game-
random. Then the infinite sequence of outcomes ω

is Martin-Löf random for any rational forecasting sys-
tem ϕr that’s compatible with (I1,ω1, I2,ω2, . . .). Martin-Löf ‘=’ Prequential

Consider any non-degenerate recursive rational fore-
casting system ϕr. Then any path ω ∈ {0,1}N is
Martin-Löf random for ϕr if and only if the prequen-
tial path (ϕr(□),ω1,ϕr(ω1),ω2, . . . ) ∈ (Ir×{0,1})N is
game-random.

Rational restriction
For every non-degenerate computable forecasting sys-
tem ϕ there’s a recursive rational forecasting system ϕr,
with ϕ ⊆ ϕr, such that a path ω ∈ {0,1}N is Martin-Löf
random for ϕ if and only if it’s Martin-Löf random for ϕr.

Martin-Löf ⊆ Prequential
Consider any infinite sequence of interval forecasts and
outcomes (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N that’s game-
random. Then the infinite sequence of outcomes ω

is Martin-Löf random for any rational forecasting sys-
tem ϕr that’s compatible with (I1,ω1, I2,ω2, . . .).

Property 1: universal superfarthingale
There’s a so-called universal lower semicomputable test super-
farthingale U with the property that any non-degenerate pre-
quential path (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N is game-random
if and only if limsupn→+∞U((I1,ω1, I2,ω2, . . .)1:n) <+∞.

Property 1: universal supermartingale
For every non-degenerate computable forecasting system ϕ,
there’s a so-called universal lower semicomputable test su-
permartingale T such that any path ω ∈ {0,1}N is Martin-Löf
random for ϕ if and only if limn→+∞ T (ω1, . . . ,ωn) <+∞.

Property 1: universal superfarthingale
There’s a so-called universal lower semicomputable test super-
farthingale U with the property that any non-degenerate pre-
quential path (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N is game-random
if and only if limsupn→+∞U(I1,ω1, . . . , In,ωn) <+∞.

Property 2: at least one random preq. path
For every infinite sequence of rational interval fore-
casts (I1, I2, . . . ) ∈ I N

r there’s at least one path ω ∈ {0,1}N

such that ((I1, I2, . . . ),ω) ∈ (Ir×{0,1})N is game-random.

Property 2: at least one random path
For every forecasting system ϕ, there is at least one path ω ∈
{0,1}N that is Martin-Löf random for ϕ.

Property 2: at least one random preq. path
For every infinite sequence of rational interval fore-
casts (I1, I2, . . . ) ∈ I N

r there’s at least one path ω ∈ {0,1}N

such that (I1,ω1, I2,ω2, . . .) ∈ (Ir×{0,1})N is game-random.

Property 3: monotonicity
Consider any recursive rational forecasting system ϕr and
any game-random prequential path (I1,ω1, I2,ω2, . . .) ∈ (Ir ×
{0,1})N. If In+1 ⊆ ϕr(ω1, . . . ,ωn) for all n ∈ N0, then (ϕr(□),ω1,
ϕr(ω1),ω2, . . . ) ∈ (Ir×{0,1})N is game-random as well.

Property 3: monotonicity
Consider any forecasting system ϕ. If a path ω ∈ {0,1}N is
Martin-Löf random for ϕ, then it is Martin-Löf random as well
for any forecasting system ϕ ′ for which ϕ ⊆ ϕ ′.

Property 3: monotonicity
Consider any recursive rational forecasting system ϕr and
any game-random prequential path (I1,ω1, I2,ω2, . . .) ∈ (Ir ×
{0,1})N. If In+1 ⊆ ϕr(ω1, . . . ,ωn) for all n ∈ N0, then (ϕr(□),ω1,
ϕr(ω1),ω2, . . . ) ∈ (Ir×{0,1})N is game-random as well.

Property 4: relative frequencies
Consider any infinite sequence of rational interval forecasts
and outcomes (I1,ω1, I2,ω2, . . .) ∈ (Ir × {0,1})N and any re-
cursive selection function S : (Ir ×{0,1})∗×Ir → {0,1} such
that ∑

+∞

k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1) = +∞. If (I1,ω1, I2,ω2, . . .) is
game-random, then

liminf
n→+∞

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)[ωk+1−min Ik+1]

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)

≥ 0

and

limsup
n→+∞

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)[ωk+1−max Ik+1]

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)

≤ 0.

Property 4: relative frequencies
Consider any path ω ∈ {0,1}N, any computable forecasting
system ϕ and any recursive selection process S : {0,1}∗ →
{0,1} such that limn→+∞ ∑

n−1
k=0 S(ω1, . . . ,ωk) = +∞. If ω is Martin-

Löf random for ϕ, then

liminf
n→+∞

∑
n−1
k=0 S(ω1, . . . ,ωk)[ωk+1−ϕ(ω1, . . . ,ωk)]

∑
n−1
k=0 S(ω1, . . . ,ωk)

≥ 0

and

limsup
n→+∞

∑
n−1
k=0 S(ω1, . . . ,ωk)[ωk+1−ϕ(ω1, . . . ,ωk)]

∑
n−1
k=0 S(ω1, . . . ,ωk)

≤ 0.

Property 4: relative frequencies
Consider any infinite sequence of rational interval forecasts
and outcomes (I1,ω1, I2,ω2, . . .) ∈ (Ir × {0,1})N and any re-
cursive selection function S : (Ir ×{0,1})∗×Ir → {0,1} such
that ∑

+∞

k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1) = +∞. If (I1,ω1, I2,ω2, . . .) is
game-random, then

liminf
n→+∞

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)[ωk+1−min Ik+1]

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)

≥ 0

and

limsup
n→+∞

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)[ωk+1−max Ik+1]

∑
n−1
k=0 S(I1,ω1, . . . , Ik,ωk, Ik+1)

≤ 0.
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What kind of forecasting
framework do we borrow
from Dawid and Vovk?


