No-Arbitrage Pricing with α-DS Mixtures in a Market with Bid-Ask Spreads

Motivation: pricing in a market with frictions

Classical no-arbitrage pricing theory assumes that the market is competitive and frictionless Prices can be expressed as discounted expectations with respect to an "artificial" probability measure Q

- PROBLEM: Markets show frictions, mostly in the form of bid-ask spreads
- AIM: Replace Q with a non-additive measure so as to consider bid-ask spreads

$\alpha-\mathrm{DS}$ mixtures

Consider:
$\bullet \Omega=\{1, \ldots, n\}$ with $n \geq 1$, a finite set of states of the world

- $\mathcal{P}(\Omega)$, power set of events
$\bullet \mathbb{R}^{\Omega}$, set of all random variables

Definition (α-DS mixture)

Let $\alpha \in[0,1]$. A mapping $\varphi_{\alpha}: \mathcal{P}(\Omega) \rightarrow[0,1]$ is called an α-DS mixture if there exists a belief function Bel $: \mathcal{P}(\Omega) \rightarrow[0,1]$ with dual plausibility function $P l$ such that, for all $A \in \mathcal{P}(\Omega)$,

$$
\varphi_{\alpha}(A)=\alpha \operatorname{Bel}(A)+(1-\alpha) P l(A)=\alpha \operatorname{Bel}(A)+(1-\alpha)\left(1-\operatorname{Bel}\left(A^{c}\right)\right) .
$$

The belief function Bel is said to represent the α-DS mixture φ_{α}

We further distinguish the subclasses of additive and consonant α-DS mixtures.

Proposition (unique representation)

Let $\alpha \in[0,1]$ with $\alpha \neq \frac{1}{2}$, and $\varphi_{a}: \mathcal{P}(\Omega) \rightarrow[0,1]$ be an $\alpha-$ DS mixture. Let Bel, Bel be belief functions on $\mathcal{P}(\Omega)$. If both Bel and Bel' represent φ_{α}, then Bel $=$ Bel.

Properties of $\alpha-$ DS mixtures

Proposition (properties of a φ_{α})

Let $\alpha \in[0,1]$. An α-DS mixture $\varphi_{a}: \mathcal{P}(\Omega) \rightarrow[0,1]$ satisties the following properties
(i) $\varphi_{\alpha}(\emptyset)=0$ and $\varphi_{\alpha}(\Omega)=1$;
(ii) $\varphi_{\alpha}(A) \leq \varphi_{\alpha}(B)$, when $A \subseteq B$ and $A, B \in \mathcal{P}(\Omega)$
(iii) φ_{α} is self-dual if and only if it is additive or $\alpha=\frac{1}{2}$
(iv) φ_{α} is sub-additive if it is additive or $\alpha \in\left[0, \frac{1}{2}\right]$.

For every $\alpha \in[0,1]$, the class \mathbf{M}_{α} of all $\alpha-\mathrm{DS}$ mixtures on $\mathcal{P}(\Omega)$ is convex and contains the class \mathbf{P} of all probability measures on $\mathcal{P}(\Omega)$.
$\underset{\text { Every }}{\alpha-\mathrm{DS} \text { mixture Choquet expectation }}$

$$
\mathbb{C}_{\varphi_{\alpha}}[X]=\oint X d \varphi_{\alpha}
$$

Hurwicz-like representation: $\mathbb{C}_{\varphi_{\varphi}}[X]=\alpha \min _{p \in C_{B e l}} \mathbb{E}_{\rho}[X]+(1-\alpha) \max _{P \in C_{B e l}} \mathbb{E}_{\rho}[X]$ where $\mathcal{C}_{\text {Bel }}$ is the core of Bel Möbius-like representation: $\mathbb{C}_{\varphi_{\alpha}}[X]=\sum_{B \in U}[X]^{\alpha}(B) \mu(B)$ where μ is the Möbius inverse of Bel and
$\mathcal{U}=\mathcal{P}(\Omega) \backslash\{\emptyset\}$ and $\llbracket X \rrbracket^{\alpha}: U \rightarrow \mathbb{R}$ with $\llbracket X \rrbracket^{\alpha}(B)=\alpha \min _{i \in B} X(i)+(1-\alpha) \max _{i \in \mathcal{B}} X(i)$

One-period market with bid-ask spreads

No-arbitrage pricing under α-PRU

Given a portfolio $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)^{T} \in \mathbb{R}^{m+1}$ we define
Price at time $t=0: V_{0}^{\lambda}=\lambda_{0}+\sum_{k=1}^{m} \lambda_{k} S_{0}^{k}$
Payoff under $\alpha-$ PRU at time $t=1: V_{1}^{\lambda}=\lambda_{0}(1+r)+\sum_{k=1}^{m} \lambda_{k} \llbracket S_{1}^{k} \rrbracket^{\alpha}$
$\alpha-$ PRU principle at time $t=1$
PRU (Partially Resolving Uncertainty): An agent may only acquire that $B \neq \emptyset$ occurs, without knowing which is the true $i \in B$
α-pessimism: An agent always considers the α-mixture between the minimum and the maximum of random payoffs on every $B \neq \varnothing$

Theorem (First FTAP under $\alpha-$ PRU)

Let $\alpha \in[0,1]$. The following conditions are equivalent:
(i) there exists an α-DS mixture $\widehat{\varphi_{\alpha}}$ represented by a belief function strictly positive on \mathcal{U} and such that $\frac{\mathbb{C}_{\mathscr{\varphi}_{1}}\left[S_{1}^{k}\right]}{1+r}=S_{0}^{k}$, for $k=1, \ldots, m$;
(ii) for every $\lambda \in \mathbb{R}^{m+1}$ none of the following conditions holds:
(a) $V_{1}^{\lambda}(\{i\})=0$, for $i=1, \ldots, n, V_{1}^{\lambda}(B) \geq 0$, for all $B \in \mathcal{U} \backslash\{\{i\}: i \in \Omega\}$ and $V_{0}^{\lambda}<0$;
(b) $V_{1}^{\lambda}(\{i\}) \geq 0$, for $i=1, \ldots, n$, not all $0, V_{1}^{\lambda}(B) \geq 0$, for all $B \in \mathcal{U} \backslash\{\{i\}: i \in \Omega\}$, and $V_{0}^{\lambda} \leq 0$.

Theorem (Second FTAP under α-PRU)
 Let $\alpha \in[0,1]$. If the market satisfies condition (ii) of the First FTAP under α-PRU and is α-PRU complete, i.e., for $\mathcal{U}=\left\{B_{1}, \ldots, B_{2^{n}-1}\right\}$, it is $m \geq 2^{n}-1$ and $S_{1}^{k}=1_{B_{k}}$, for $k=1, \ldots, 2^{n}-1$, then the $\alpha-D S$ mixture $\widehat{\varphi_{\alpha}}$ in condition (i) of the First FTAP under α-PRU is unique.

α-DS mixture no-arbitrage price of a payoff $X_{1} \in \mathbb{R}^{\Omega}$ $X_{0}=(1+r)^{-1} \mathbb{C}_{\bar{q}_{ब}}\left[X_{1}\right]=(1+r)^{-1}\left(\alpha \min _{Q \in C_{\text {Bel }}} \mathbb{E}_{\rho}\left[X_{1}\right]+(1-\alpha) \max _{Q \in \mathbb{C}_{\text {Bel }}} \mathbb{E}_{Q}\left[X_{1}\right]\right)$

META stock market data with bid-ask spreads

Consider a single risky asset:

- $t=0$ identified with 2023-01-23
- $t=1$ identified with 2023-02-24
- US T-Bill with $1+r=(1.0469)^{\frac{32}{65}}$
- Last one year of META closing prices: S_{1}^{1} ranging in
$\mathcal{S}_{1}^{1}=\{112.4,159.2,206.0,252.8,299.6\}$
- Bid-ask prices at time $t=0$ of call and put options on META with maturity $t=1$, strike prices in $\mathcal{K}_{\text {call }}$ and $\mathcal{K}_{\text {put }}$, and payoffs $C_{1}^{K}=\max \left\{S_{1}^{1}-K\right\}$
$P_{1}^{K}=\max \left\{K-S_{1}^{1}\right\}$

Tuning of α : a measure of market pessimism

For a fixed $\alpha \in[0,1]$, compute the α-mixture prices $C_{0}^{K, \alpha}=\alpha \underline{C}_{0}^{K}+(1-\alpha) \bar{C}_{0}^{K}$ and $P_{0}^{K, \alpha}=\alpha \underline{P}_{0}^{K}+(1-\alpha) \bar{P}_{0}^{K}$:

subject to: $\left\{\begin{array}{l}\widehat{\varphi_{\alpha}} \in \mathrm{M}_{\alpha}, \\ \widehat{\varphi_{\alpha}} \text { is represented by } \widehat{\text { Bel }}, \\ \widehat{\text { Bell }},\end{array}\right.$ $\widehat{\operatorname{Bel}(}\{i\}) \geq \epsilon$, for all $i \in \Omega$, with $\epsilon=0.0001$

