No-Arbitrage Pricing with α -DS Mixtures in a Market with Bid-Ask Spreads

Davide Petturiti^a and Barbara Vantaggi^b

^aDept. Economics, University of Perugia, Italy ^bDept. MEMOTEF, "La Sapienza" University of Rome, Italy

Motivation: pricing in a market with frictions

- Classical no-arbitrage pricing theory assumes that the market is **competitive** and **frictionless**
- Prices can be expressed as **discounted expec**tations with respect to an "artificial" probability measure Q
- PROBLEM: Markets show frictions, mostly in the form of bid-ask spreads
- \bullet AIM: Replace Q with a non-additive measure so as to consider bid-ask spreads

α -DS mixtures

Consider:

- $\Omega = \{1, ..., n\}$ with $n \ge 1$, a finite set of states of the world
- $\mathcal{P}(\Omega)$, power set of events
- $\bullet \mathbb{R}^{\Omega}$, set of all random variables

Definition (α -DS mixture)

Let $\alpha \in [0,1]$. A mapping $\varphi_{\alpha}: \mathcal{P}(\Omega) \to [0,1]$ is called an α -DS mixture if there exists a belief function $Bel: \mathcal{P}(\Omega) \to [0,1]$ with dual plausibility function Pl such that, for all $A \in \mathcal{P}(\Omega)$,

$$\varphi_{\alpha}(A) = \alpha Bel(A) + (1 - \alpha)Pl(A) = \alpha Bel(A) + (1 - \alpha)(1 - Bel(A^c)).$$

The belief function Bel is said to **represent** the α -DS mixture φ_{α} .

We further distinguish the subclasses of additive and consonant α -DS mixtures.

Proposition (unique representation)

Let $\alpha \in [0,1]$ with $\alpha \neq \frac{1}{2}$, and $\varphi_{\alpha} : \mathcal{P}(\Omega) \to [0,1]$ be an α -DS mixture. Let Bel, Bel' be belief functions on $\mathcal{P}(\Omega)$. If both Bel and \bar{Bel}' represent φ_{α} , then Bel = Bel'.

Properties of α -DS mixtures

Proposition (properties of a φ_{α})

Let $\alpha \in [0, 1]$. An α -DS mixture $\varphi_{\alpha} : \mathcal{P}(\Omega) \to [0, 1]$ satisfies the following properties:

(i) $\varphi_{\alpha}(\emptyset) = 0$ and $\varphi_{\alpha}(\Omega) = 1$;

 Q_{χ}

(ii) $\varphi_{\alpha}(A) \leq \varphi_{\alpha}(B)$, when $A \subseteq B$ and $A, B \in \mathcal{P}(\Omega)$;

(iii) φ_{α} is self-dual if and only if it is additive or $\alpha = \frac{1}{2}$;

(iv) φ_{α} is sub-additive if it is additive or $\alpha \in [0, \frac{1}{2}]$.

For every $\alpha \in [0, 1]$, the class M_{α} of all α -DS mixtures on $\mathcal{P}(\Omega)$ is **convex** and contains the class P of all probability measures on $\mathcal{P}(\Omega)$.

α -DS mixture Choquet expectation

Every φ_{α} uniquely extends to a functional $\mathbb{C}_{\varphi_{\alpha}}: \mathbb{R}^{\Omega} \to \mathbb{R}$ by setting, for every $X \in \mathbb{R}^{\Omega}$,

$$\mathbb{C}_{\varphi_{\alpha}}[X] = \oint X \, \mathrm{d}\varphi_{\alpha}$$

Hurwicz-like representation: $\mathbb{C}_{\varphi_{\alpha}}[X] = \alpha \min_{P \in \mathcal{C}_{Bel}} \mathbb{E}_{P}[X] + (1 - \alpha) \max_{P \in \mathcal{C}_{Bel}} \mathbb{E}_{P}[X]$ where \mathcal{C}_{Bel} is the core of Bel**Möbius-like representation:** $\mathbb{C}_{\varphi_{\alpha}}[X] = \sum_{B \in \mathcal{U}} [\![X]\!]^{\alpha}(B)\mu(B)$ where μ is the Möbius inverse of Bel and

 $\mathcal{U} = \mathcal{P}(\Omega) \setminus \{\emptyset\}$ and $[X]^{\alpha} : \mathcal{U} \to \mathbb{R}$ with $[X]^{\alpha}(B) = \alpha \min_{i \in B} X(i) + (1 - \alpha) \max_{i \in B} X(i)$

One-period market with bid-ask spreads

No-arbitrage pricing under α -PRU

Given a portfolio $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^{m+1}$ we define:

Price at time t = 0: $V_0^{\lambda} = \lambda_0 + \sum_{k=1}^{m} \lambda_k S_0^k$

Payoff under α -PRU at time t = 1: $V_1^{\lambda} = \lambda_0(1+r) + \sum_{k=0}^{m} \lambda_k [S_1^k]^{\alpha}$

α -PRU principle at time t=1

PRU (Partially Resolving Uncertainty): An agent may only acquire that $B \neq \emptyset$ occurs, without knowing which is the true $i \in B$

 α -pessimism: An agent always considers the α -mixture between the minimum and the maximum of random payoffs on every $B \neq \emptyset$

Let $\alpha \in [0, 1]$. The following conditions are equivalent:

Theorem (First FTAP under α -PRU)

(i) there exists an α -DS mixture $\widehat{\varphi}_{\alpha}$ represented by a belief function strictly positive on $\mathcal U$ and such that $\frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[S_1^k]}{1+r} = S_0^k$, for $k = 1, \ldots, m$;

(ii) for every $\lambda \in \mathbb{R}^{m+1}$ none of the following conditions holds:

(a) $V_1^{\lambda}(\{i\}) = 0$, for i = 1, ..., n, $V_1^{\lambda}(B) \ge 0$, for all $B \in \mathcal{U} \setminus \{\{i\} : i \in \Omega\}$ and $V_0^{\lambda} < 0$;

(b) $V_1^{\lambda}(\{i\}) \geq 0$, for i = 1, ..., n, not all $0, V_1^{\lambda}(B) \geq 0$, for all $B \in \mathcal{U} \setminus \{\{i\} : i \in \Omega\}$, and $V_0^{\lambda} \leq 0$.

Theorem (Second FTAP under α -PRU)

Let $\alpha \in [0, 1]$. If the market satisfies condition (ii) of the First FTAP under α -PRU and is α -PRU complete, i.e., for $\mathcal{U} = \{B_1, \dots, B_{2^n-1}\}$, it is $m \ge 2^n - 1$ and $S_1^k = \mathbf{1}_{B_k}$, for $k = 1, \dots, 2^n - 1$, then the α -DS mixture $\widehat{\varphi_{\alpha}}$ in condition (i) of the First FTAP under α -PRU is unique.

 α -DS mixture no-arbitrage price of a payoff $X_1 \in \mathbb{R}^{\Omega}$

$$X_0 = (1+r)^{-1} \mathbb{C}_{\widehat{\varphi_{\alpha}}}[X_1] = (1+r)^{-1} \left(\alpha \min_{Q \in \mathcal{C}_{\widehat{Bel}}} \mathbb{E}_Q[X_1] + (1-\alpha) \max_{Q \in \mathcal{C}_{\widehat{Bel}}} \mathbb{E}_Q[X_1] \right)$$

META stock market data with bid-ask spreads

Consider a single risky asset:

• t = 0 identified with 2023 - 01 - 23

• t = 1 identified with 2023 - 02 - 24

• US T-Bill with $1 + r = (1.0469)^{\frac{32}{365}}$ • Last one year of META closing prices:

 S_1^1 ranging in $S_1^1 = \{112.4, 159.2, 206.0, 252.8, 299.6\}$

• Bid-ask prices at time t = 0 of call and put options on META with maturity t = 1, strike prices in \mathcal{K}_{call} and \mathcal{K}_{put} , and payoffs

 $C_1^K = \max\{S_1^1 - K\}$ $P_1^K = \max\{K - S_1^1\}$

Tuning of α : a measure of market pessimism

For a fixed $\alpha \in [0, 1]$, compute the α -mixture prices $C_0^{K, \alpha} = \alpha \underline{C}_0^K + (1 - \alpha) \overline{C}_0^K$ and $P_0^{K, \alpha} = \alpha \underline{P}_0^K + (1 - \alpha) \overline{P}_0^K$:

$$\text{minimize } E(\widehat{\varphi_{\alpha}}) = \sum_{K \in \mathcal{K}_{call}} \left(C_0^{K,\alpha} - \frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[C_1^K]}{1+r} \right)^2 + \sum_{K \in \mathcal{K}_{put}} \left(P_0^{K,\alpha} - \frac{\mathbb{C}_{\widehat{\varphi_{\alpha}}}[P_1^K]}{1+r} \right)^2$$

 $\widehat{arphi_lpha}\in\mathsf{M}_lpha$, subject to:

 $\widehat{\varphi_{\alpha}}$ is represented by \widehat{Bel} ,

 $\widehat{Bel}(\{i\}) \ge \epsilon$, for all $i \in \Omega$, with $\epsilon = 0.0001$

