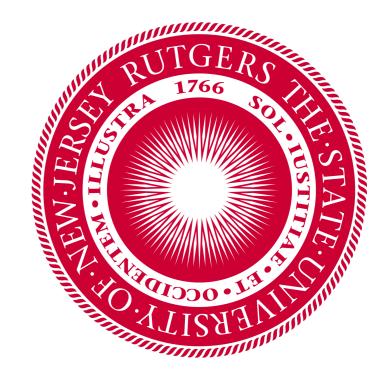


Dynamic Precise and Imprecise Probability Kinematics

Michele Caprio & Ruobin Gong



PRECISE Center, Dept. of Computer and Information Science, University of Pennsylvania Dept. of Statistics, Rutgers University

caprio@seas.upenn.edu, ruobin.gong@rutgers.edu

1. Probability kinematics

The goal of this paper is to introduce a method to update mechanically the subjective beliefs of an agent that faces ambiguity and who is only able to collect partial information. **ROBABILITY** kinematics (PK), also known as Jeffrey's rule of updating, is the following

 $P^{\star}(A) = \sum_{E \in \mathcal{E}} P(A \mid E) P^{\star}(E).$

Call Q the "objective" (finitely additive) probability measure on (Ω, \mathcal{F}) , $Q(X^{-1}(x)) = P_X(\{x\})$, for all $x \in \mathcal{X}$.

Theorem 2 Suppose the following conditions hold,

1. $\lim_{n_t \to \infty} \beta(n_t) = 0;$

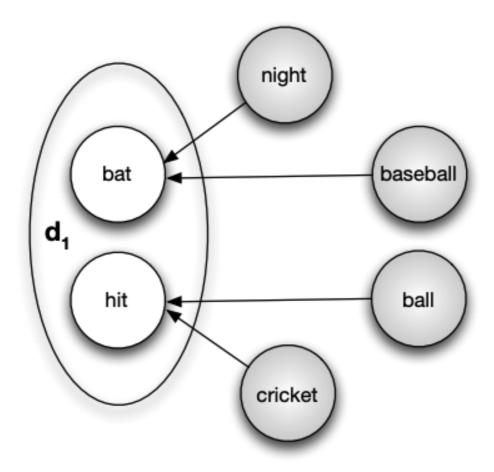
2. for every discontinuity point x of F_X , $F_X(x^+) - F(x^-) = P_X(\{x\})$;

3. $F_X(-\infty) = 1 - F_X(\infty) = 0.$

Then, $P_{\mathcal{E}_t}$ converges to $\sum_{E \in \tilde{\mathcal{E}}} P_{\mathcal{E}_{t-1}}(\cdot \mid E)Q(E)$ almost surely as $n_t \to \infty$ in the total variation distance.

It is valid when there is a partition \mathcal{E} of the state space Ω such that $P^{\star}(A \mid E) = P(A \mid E)$, for all $A \subset \Omega$ and all $E \in \mathcal{E}$. It is useful when evidence is not propositional (i.e. it is be possible to represent it as a crisp subset), but instead is uncertain or partial.

PK is a generalization of Bayes' rule: consider partition $\{E, E^c\}$ for some $E \subset \Omega$. If $P^*(E) = 1$, we have that $P^{\star}(A) = P(A \mid E)P^{\star}(E) + P(A \mid E^{c})P^{\star}(E^{c}) = P(A \mid E)$, which is Bayes' rule.



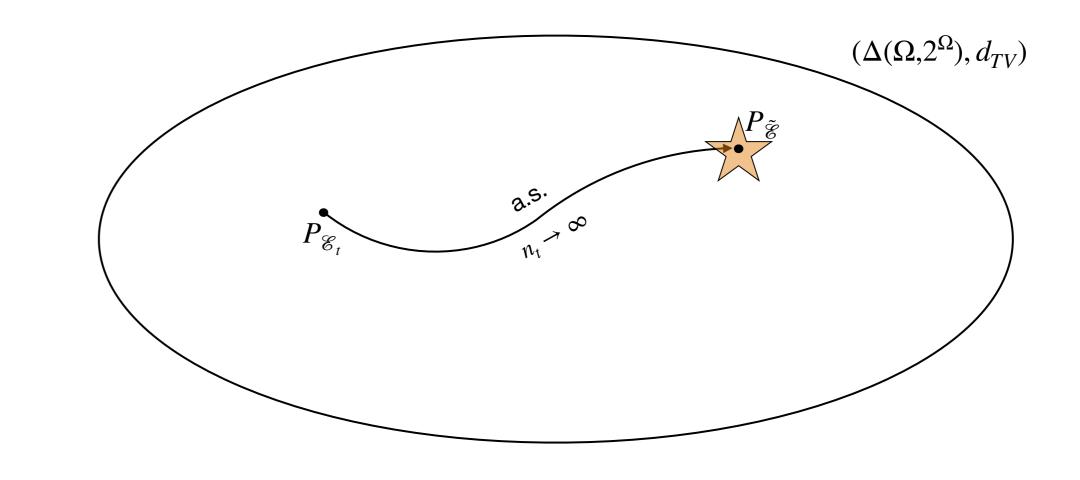
2. Dynamic Probability Kinematics (DPK)

- Let Ω be the state space of interest, and assume it is at most countable.
- Suppose that P is a finitely additive probability measure on (Ω, \mathcal{F}) representing an agent's initial beliefs around the elements of $\mathcal{F} = 2^{\Omega}$.
- The agent observes data points x_1, \ldots, x_n that are realizations of a random quantity $X: \Omega \to \mathcal{X}$ whose distribution P_X is unknown.
- Call F_X its cdf, and assume \mathcal{X} is finite.
- Consider now the collection $\mathcal{E}' := (E_i)_{i=1}^n$, where $E_i \equiv X^{-1}(x_i) := \{\omega \in \Omega : X(\omega) = x_i\}$.

Because as n_t grows to infinity the partition induced by collection $\{X^{-1}(x_i)\}_{i=1}^{n_t}$ approaches $\tilde{\mathcal{E}}$, we denote by $P_{\tilde{\mathcal{E}}}$ the limit we find in Theorem 2.

Dynamic probability kinematics is not commutative. Despite that, the limit probability $P_{\tilde{c}}$ is the same regardless of the order in which data is collected.

Proposition 3 Suppose that conditions 1-3 of Theorem 2 hold. Call $P_{\tilde{c}}$ the almost sure limit of $(P_{\mathcal{E}_t})$ and $P_{\tilde{\mathcal{E}}_t}$ the almost sure limit of $(P_{\mathcal{E}'_t})$ in the total variation metric as n_t goes to infinity. Then, $P_{\tilde{\mathcal{E}}} = P_{\tilde{\mathcal{E}}'}$.



5. Working with sets of probabilities

Definition needed:

$\operatorname{core}(\underline{P}) = \{ P \in \Delta(\Omega, \mathcal{F}) : P(A) \ge \underline{P}(A), \forall A \in \mathcal{F} \}$ $= \{ P \in \Delta(\Omega, \mathcal{F}) : \overline{P}(A) \ge P(A) \ge \underline{P}(A), \forall A \in \mathcal{F} \},\$

It is convex and weak^{*}-compact [1, Theorem 3.6.2]. We assume it has finite number of extrema. To generalize DPK to DIPK, we prescribe the agent to

• It induces partition $\mathcal{E} = \{E_j\}_{j=1}^{m+1}$ of Ω , $m \leq n$. Unique elements of $\mathcal{E}': E_1, \ldots, E_m$; complement of their union: $E_{m+1} = (\bigcup_{j=1}^m E_j)^c = \Omega \setminus \bigcup_{j=1}^m E_j$.

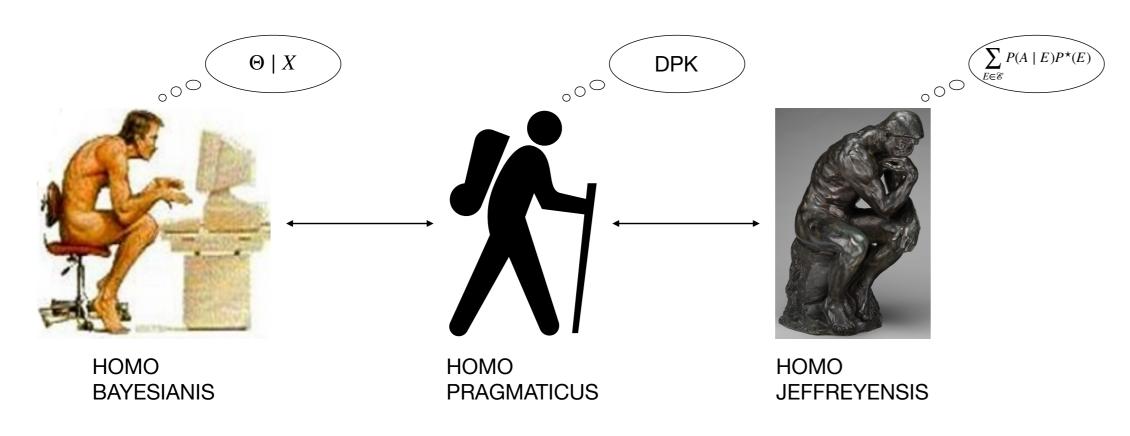
DPK is defined as

 $P_{\mathcal{E}}(A) := \sum_{E_j \in \mathcal{E}} P(A \mid E_j) P_{\mathcal{E}}(E_j),$ $P_{\mathcal{E}}(E_i) := \beta(n)P(E_i) + [1 - \beta(n)]P^{emp}(E_i),$

where $\beta(n)$ is a coefficient in [0, 1] depending on n, and, for all $j \in \{1, \ldots, m\}$,

 $P^{emp}(E_j) := \begin{cases} \frac{1}{n+1} \sum_{i=1}^n \mathbb{I}(E_j = E_i), & \text{if } E_{m+1} \neq \emptyset\\ \frac{1}{n} \sum_{i=1}^n \mathbb{I}(E_j = E_i), & \text{if } E_{m+1} = \emptyset \end{cases}.$

Of course, $P^{emp}(E_{m+1}) = 1 - \sum_{j=1}^{m} P^{emp}(E_j)$.



3. Jeffrey's rule vs DPK

1. Specify a set of probabilities \mathcal{P} ;

2. Compute the lower probability <u>P</u> associated with it. The core $core(\underline{P}) \equiv \mathcal{P}_0^{CO}$ of such lower probability represents the agent's initial beliefs.

3. Consider the set $\mathcal{P}_{\mathcal{E}_0} = ex \mathcal{P}_{\mathcal{E}_0}^{co}$ of extrema of $\mathcal{P}_{\mathcal{E}_0}^{co}$

4. Compute the DPK update of every element in $\mathcal{P}_{\mathcal{E}_0}$.

5. Compute $\mathcal{P}_{\mathcal{E}_1}^{CO} = \text{Conv}(\mathcal{P}_{\mathcal{E}_1}) = \text{core}(\underline{P}_{\mathcal{E}_1})$, where $\underline{P}_{\mathcal{E}_1}$ is the updated lower probability [1, Theorem 3.6.2].

Proposition 4 If assumptions 1-3 of Theorem 2 hold, then $d_H(\mathcal{P}_{\mathcal{E}_t}^{CO}, \mathcal{P}_{\tilde{\mathcal{E}}}^{CO}) \to 0$ as n_t goes to infinity with probability one.

6. Examples of DIPK updating: Soccer match results

Let $\Omega = \{W, D, L\}$ represent the result of soccer match Juventus Turin vs Inter Milan. Let then $X : \Omega \to \mathcal{X} = \{0, 1\}$, where 1 denotes a useful result and 0 denotes a defeat. The finest partition of Ω according to DPK is given by $\mathcal{E} = \{E_1, E_2, E_3\}$, where $E_1 = X^{-1}(1) = \{W, D\}$, $E_2 = X^{-1}(0) = \{L\}$, and $E_3 = \emptyset$. The data points x_1, \ldots, x_n that we collect represent the outcomes of past matches.

Let the agent specify $\mathcal{P} \subset \Delta(\Omega, \mathcal{F})$, and suppose that the lower and upper probabilities $\underline{P} \equiv \underline{P}_{\mathcal{E}_0}$ and $\overline{P} \equiv \overline{P}_{\mathcal{E}_0}$ associated with \mathcal{P} are such that $\underline{P}(W) = \underline{P}(D) = 0.27$, $\overline{P}(W) = \overline{P}(D) = 0.52$, $\underline{P}(L) = 0.21$, and $\overline{P}(L) = 0.31$. As of January 12, 2022, there have been 257 matches between the two teams, 178 useful results for Juventus Turin and 79 wins for Inter Milan. We have that $P_1^{emp}(E_1) = 178/257$, $P_1^{emp}(E_2) = 79/257$ and $P_1^{emp}(E_3) = 0$.

The three main tasks in PK are:

(1) collecting a partition \mathcal{E} of state space Ω ;

(2) subjectively assess the probability $P^{\star}(E)$ to attach to the elements E of partition \mathcal{E} ; (3) compute the update $P^{\star}(A) = \sum_{E \in \mathcal{E}} P(A \mid E) P^{\star}(E)$.

In DPK, we:

(1) collect data points belonging to a generic set \mathcal{X} that induce a partition \mathcal{E} of state space Ω ;

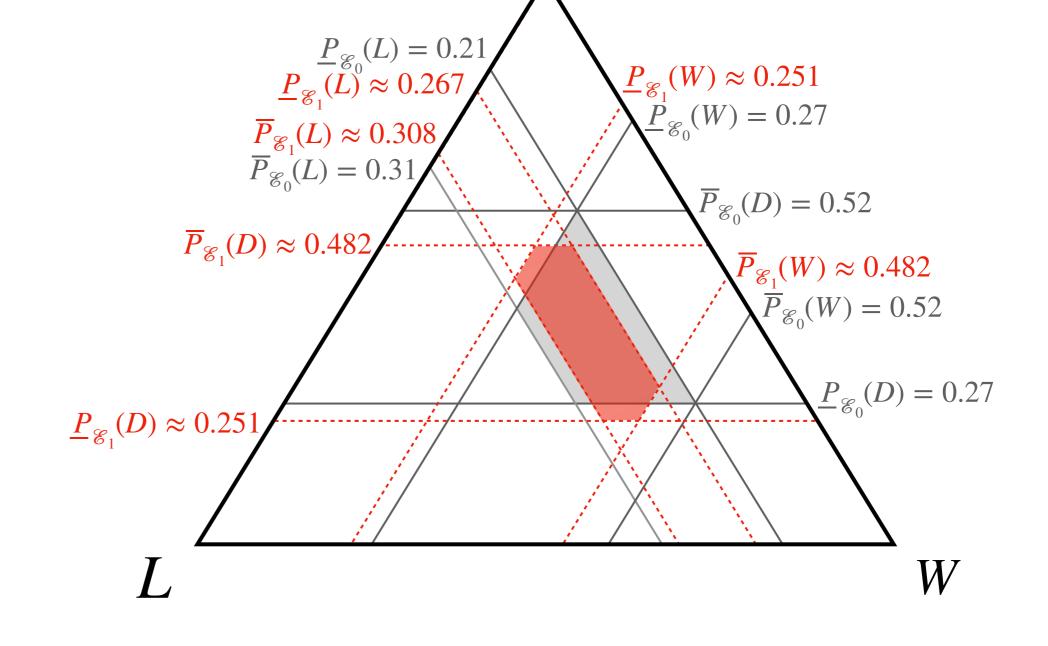
(2) mechanically attach probabilities to the elements of the induced partition;

(3') compute the update as in "regular" PK.

4. Subsequent DPK updates

Notice that as $t \to \infty$, $n_t \to \infty$. In addition, a consequence of how we build partitions is that, for any t, \mathcal{E}_t is not coarser than \mathcal{E}_{t-1} .

Proposition 1 There exists a partition $\tilde{\mathcal{E}}$ that cannot be refined as a result of the DPK updating process.



References and whole paper can be found here:

