A NEW OUTER MEASURE FOR MODEL-FREE GENERALIZED PROCESSES Rafał Łochowski rlocho@sgh.waw.pl Institute of Mathematical Economics, Warsaw School of Economics, Poland

Applications in Mathematical Finance

- The goal: to describe all possible paths representing evolution of prices of traded financial assets which do not lead to **arbitrage**.
- The 'old' tool: an outer measure on sets (properties) of continuous paths $\omega : [0, T] \rightarrow \mathbb{R}$. This captures the following notion of arbitrage: no infinite gains at the terminal time T by risking \$1 only.
- The 'new' tool: an outer measure on sets (properties) of pairs (t, ω) , where $t \in [0, +\infty)$ represents time and $\omega \in \Omega$ represents elementary event (the 'state of the world' or the outcome of reality). This captures the following notion of arbitrage: no infinite gains achieved by risking only \$1 immediately after a given property ceases to hold.

Background

The investigations in game-theoretic approach to model-free, financial models of continuous price paths culminated in Glenn Shafer and Vladimir Vovk publishing their book [SV19]. In their book Shafer and Vovk introduce a new notion – the notion of *instant enforcement*. But they do not characterize it using any outer measure, unlike what Vovk did in the case of sets of "typical" (not leading to arbitrage) price paths. Informally, property E is instantly enforceable if there exists a trading strategy making a trader using this strategy infinitely rich as soon as the property E ceases to hold. In [Loc22] I introduce an outer measure on the space $[0, +\infty) \times \Omega$, which assigns zero value exactly to those sets (properties) of pairs of time t and an elementary event ω , complements of which are instantly enforceable.

Model-free martingale spaces

We will work with a martingale space which is a quintuple

 $\left(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, J = \{1, 2, \dots, d\}, \{S^j, j \in J\}\right)$

of the following objects:

- Ω is a space of possible outcomes of reality, whose elements are called *elementary events*,
- \mathcal{F} is a σ -field of the subsets of Ω which we call *events*,
- $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ is a *filtration* (this represents the influx of information in time) such that for $t \ge 0, \mathcal{F}_t \subseteq \mathcal{F}$,

• and $\{S^j, j \in J\} = \{S^1, S^2, \dots, S^d\}$ is a family of mappings $S^j : [0, +\infty) \times \Omega \to \mathbb{R}$, called basic continuous martingales, such that for any $t \ge 0$ and $j \in J$, S^j_t is a $(\mathcal{F}_t, \mathcal{B}(\mathbb{R}))$ measurable real variable $S^j_t : \Omega \to \mathbb{R}$ ($\mathcal{B}(\mathbb{R})$ denotes the σ -field of Borel subsets of the set of real numbers \mathbb{R}) and such that for each $\omega \in \Omega$ the trajectory $[0, +\infty) \ni t \mapsto S^j_t(\omega)$ is continuous.

Capital processes

For a real process $X : [0, +\infty) \times \Omega \to \mathbb{R}$ and a simple trading strategy $G = (c, (\tau_n), (g_n))$ we define

$$(G \cdot X)_t(\omega) := c + \sum_{m=1}^{+\infty} g_{n-1}(\omega) \left(X_{\tau_n(\omega) \wedge t}(\omega) - X_{\tau_{n-1}(\omega) \wedge t}(\omega) \right).$$

(For two numbers $a, b \in [-\infty, +\infty]$ we define $a \wedge b = \min\{a, b\}$.) We define the simple capital process or simple integral corresponding to the vector $\mathbf{G} = (G^j)_{j \in J}$ of simple trading strategies $G^j, j \in J$, as

$$(\mathbf{G} \cdot \mathbf{S})_t(\omega) := \sum_{j \in J} (G^j \cdot S^j)_t(\omega).$$

The simple capital process has a very natural interpretation – it is the wealth accumulated till time t by the application of the simple trading strategy G^{j} to the asset whose price is

Stopping times

An \mathbb{F} -stopping time (or stopping time in short) is a random variable $\tau : \Omega \to [0, +\infty]$ such that for any $t \ge 0$,

 $\{\tau \leq t\} := \{\omega \in \Omega : \tau(\omega) \leq t\} \in \mathcal{F}_t.$

A σ -field \mathcal{F}_{τ} generated by the stopping time τ consists of those events $A \in \mathcal{F}$ which for any $t \geq 0$ satisfy

 $A \cap \{\tau \le t\} \in \mathcal{F}_t.$

Trading strategies

A simple trading strategy is a triplet $(c, (\tau_n), (g_n))$ which consists of

• the initial capital $c \in \mathbb{R}$,

• a sequence of \mathbb{F} -stopping times (τ_n) such that

 $0 \equiv \tau_0 \leq \tau_1 \leq \tau_2 \dots$

• and a sequence of globally bounded, real variables $g_n : \Omega \to \mathbb{R}, n = 0, 1, ...,$

represented by the basic martingale $S^j, j \in J$.

Nonnegative supermartingales and instantly enforceable properties

The class \mathcal{C} of *nonnegative supermartingales* is defined as the smallest class with the following properties

1. \mathcal{C} contains all simple capital processes which are nonnegative;

2. whenever $X \in \mathcal{C}$, Y is a simple capital process and X+Y is nonnegative then $X+Y \in \mathcal{C}$;

3. for any sequence (X^n) such that $X^n \in \mathcal{C}$ for $n \in \mathbb{N}$, we have that $X := \liminf_{n \to +\infty} X^n$ also belongs to \mathcal{C} .

A property $E \subseteq [0, +\infty) \times \Omega$ is *instantly enforceable*, or holds *with instant enforcement*, w.i.e. in short, if there exists $X \in \mathcal{C}$ such that $X_0 = 1$ and

 $(t,\omega) \notin E \Longrightarrow X_t(\omega) = +\infty.$

Complements of instantly enforceable properties (sets) are called *instantly blockable*.

A new outer measure and outer expectation

For $A \subseteq [0, +\infty) \times \Omega$ and for $Y : [0, +\infty) \times \Omega \to [-\infty, +\infty]$ we define $\overline{\mathbb{P}}(A) := \inf \{X_0 : X \in \mathcal{C} \text{ and } \forall (t, \omega) \in [0, +\infty) \times \Omega, X_t(\omega) \ge \mathbf{1}_A(t, \omega)\},$ $\overline{\mathbb{E}}Y := \inf \{X_0 : X \in \mathcal{C} \text{ and } \forall (t, \omega) \in [0, +\infty) \times \Omega, X_t(\omega) \ge Y_t(\omega)\}.$ Lemma 0.1 The set $B \subseteq [0, +\infty) \times \Omega$ is instantly blockable iff $\overline{\mathbb{P}}(B) = 0.$

such that g_n is $(\mathcal{F}_{\tau_n}, \mathcal{B}(\mathbb{R}))$ -measurable and $g_n(\omega) = 0$ whenever $\tau_n(\omega) = +\infty$.

References

 $[{
m Loc22}]\,{
m R.}$ Lochowski. BDG inequalities for model-free continuous price paths with instant enforcement. *Preprint* arXiv:2109.07928, 2022.

[SV19] Glenn Shafer and Vladimir Volk. *Game-Theoretic Foundations for Probability and Finance*. Wiley Series in Probability and Statistics. Wiley, 2019.