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1 Introduction & Summary
• Fisher’s fiducial argument is well motivated but the specifics are mysterious

• While fiducial inference is commonly referred to as “Fisher’s biggest blunder,” it’s directly tied to
many fundamentally important developments in statistics:

– confidence limits
– significance testing
– sufficient statistics & conditional inference

• Fiducial inference also has direct connections to imprecise probability via Dempster

• This paper (arXiv:2303.08630) offers a new connection between fiducial inference and im-
precise probability via a possibilistic inferential model (IM)

• I consider a special but important class of statistical models

– includes location-scale models as a key special case
– an agreed-upon fiducial distribution exists and has desirable statistical properties

• Main result in the paper: for this class of models, the fiducial solution is the “maximal” probability
distribution in the credal set determined by the IM

2 Problem setup
• Observable data X ∈ X, observation is x

• Statistical model {Pθ : θ ∈ T}, uncertain value denoted by Θ

• No prior information about Θ is available, i.e., prior is vacuous

• Goal is reliable uncertainty quantification about Θ, given X = x

• More specifically, the goal is to assign reliable “degrees of belief” to hypotheses about Θ

• Reliable, prior-free, probabilistic UQ has been called the “Holy Grail of Statistics”

3 Background: inferential models

3.1 High-level
• Goal is to complete the Grail quest: valid, prior-free,

(imprecise-)probabilistic uncertainty quantification

• Imprecision isn’t part of the model assumptions, but for
reliability it’s necessary that the solution is imprecise

• Book: first rigorous development along these lines

• This IM construction relies on (nested) random sets and
some aspects of Dempster–Shafer calculus

• But that’s not the only way to do it...

• A number of other subsequent developments:

– direct constructions (e.g., arXiv:1203.6665)
– practical applications (e.g., arXiv:1912.00037)
– computation (arXiv:2103.02659)
– conformal prediction (arXiv:2112.10234)
– machine-learning (arXiv:2112.10232)
– partial prior info (arXiv:2211.14567)

3.2 Possibilistic approach
• Direct and principled IM construction puts possibility theory at the forefront

• Let Lx(θ) denote the model’s likelihood function, and define the relative likelihood

η(x, θ) =
Lx(θ)

supϑ∈TLx(ϑ)
, θ ∈ T

• Next define the IM’s possibility contour

πx(θ) = Pθ{η(X, θ) ≤ η(x, θ)}, θ ∈ T

• This possibility contour determines the IM’s necessity/possibility output

Πx(A) = sup
θ∈A

πx(θ) and Πx(A) = 1− Πx(A
c), A ⊆ T

• Data-driven uncertainty quantification via (Πx,Πx)

– has certain reliability/validity properties (see below)
– can be characterized as a x-slice of a (complexity-reduced) consonant outer approximation of the

imprecise joint distribution of (X,Θ); see arXiv:2211.14567

3.3 Key properties
• Focus here on statistical reliability, but there are coherence properties too

• For this case with vacuous prior information, the following validity property is trivial

sup
Θ∈T

PΘ{πX(Θ) ≤ α} ≤ α, α ∈ [0, 1]

• Important and familiar statistical consequences:

– the testing rule “reject H if Πx(H) ≤ α” controls Type I error rate at level α
– the set {θ : πx(θ) > α} is a 100(1− α)% confidence seet

• Even more can be said in terms of reliability (arXiv:2304.05740)

4 Invariant statistical models
• Physical models often describe explicitly how the various parameter affect the observable data

• Common examples are location and location-scale models

• Generalization involves groups G of transformations acting on X (and on T)

• Basically, {Pθ : θ ∈ T} is assumed invariant wrt to transformations g ∈ G

Pθ(X ∈ ·) = Pgθ(gX ∈ ·), θ ∈ T

• There are a number of (mild) technical conditions in the paper that I’m skipping here

• For simplicity, it’s common to link T = G and treat parameter as a group element

• Key points:

– this structure translates into structure in the likelihood...
– fiducial solution agrees with the default-prior Bayes solution (based on right Haar prior)
– both give exact frequentist confidence limits

5 Fiducial and IM connections
• IM returns a possibility measure, with a corresponding credal set

C (Πx) = {Qx ∈ probs(T) : Qx(·) ≤ Πx(·)}

• Well-known characterization: Qx ∈ C (Πx) ⇐⇒ Qx{πx(Θ) ≤ α} ≤ α

• A maximal element Q⋆
x satisfies Q⋆

x{πx(Θ) ≤ α} = α

Theorem. Under the invariant statistical model setting, the IM’s credal set has a maximal element
and it corresponds to the fiducial (and default-prior Bayes) solution

6 Example
Directional data (left) with uncertain mean angle Θ, fiducial density (middle), IM contour (right)
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7 A new fiducial argument?
• Theorem says that the fiducial solution is the maximal element of the IM’s credal set

• This assumes an invariant model, so that there’s an agreed-upon fiducial solution that works

• But the IM solution always works, invariant model or otherwise

• Can we just define the “fiducial solution” as a/the maximal element of the IM credal set?

• Note: I’m not advocating for a fiducial solution, since it can’t meet my validity requirements

• But this does raise some interesting questions:

– sound definition of “maximal element”
– computation of this new fiducial solution
– comparison to existing solutions (e.g., Hannig’s generalized fiducial inference)
– statistical properties

8 False confidence theorem, revisited
• That no fiducial (or default-prior Bayes) solution can meet the validity requirement is a conse-

quence of the false confidence theorem (arXiv:1706.08565)

• Roughly, the false confidence theorem says that, however one defines the probability Qx, there
exists (α,A) ∈ [0, 1]× 2T such that A ̸∋ Θ and PΘ{QX(A) > 1− α} > α

• Currently, no characterization of the problematic A’s is available

• Conjecture: the problematic A’s correspond to hypotheses about non-linear functionals of Θ

• New reason why fiducial generally doesn’t work: even in invariant models, the best probabilistic
approximation of the marginal IM isn’t the marginal fiducial distribution

• With the invariant model structure in this paper, I proved something relevant to this conjecture,
namely, that hypotheses concerning linear functionals are safe from false confidence

9 Conclusion
• New imprecise-probability-centric connection between fiducial and IMs

• Offers new understanding of Fisher’s fiducial inference

• Maybe even a new approach to constructing fiducial solutions (if one insists)

• New support for IMs

– IMs “work” in various senses, no assumptions about invariance, etc, and offer much more than
the fiducial or Bayes solutions

– but the fiducial solution in invariant problems is very good, so it’d be an issue if there were no
connections, if the IM solution didn’t agree


